Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Machine learning model design for high performance cloud computing & load balancing resiliency: An innovative approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10252045" target="_blank" >RIV/61989100:27240/22:10252045 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1319157822003524?pes=vor" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1319157822003524?pes=vor</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jksuci.2022.10.001" target="_blank" >10.1016/j.jksuci.2022.10.001</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Machine learning model design for high performance cloud computing & load balancing resiliency: An innovative approach

  • Popis výsledku v původním jazyce

    High performance computing is now a major area where business and computing technologies need resilient high performance to meet business continuity and real-time needs. However, many top-level business and technology organizations are still in the process of improving high performance and traffic resiliency to ensure the availability of the system at all times. Machine learning is an important advancement of computer technology that helps in decision making by prediction and classification mechanism based on historical data. In this paper, we propose and integrate the concept of high-performance computing with artificial intelligence machine learning techniques in cloud platforms. The networking and computing performance data are used to validate, predict and classify the traffic and performance patterns and ensure system performance and continuous traffic flow resiliency decisions. The proposed integrated design approach has been analyzed on different step actions and decisions based on machine learning regression and classification models, which auto-correct the performance of the system at real run time instances. Our machine learning integrated design simulated results show its traffic resilience performs proactively 38.15% faster with respect to the failure point recovery along with 7.5% business cost savings as compared to today&apos;s existing non-machine learning based design models. (C) 2022 The Author(s)

  • Název v anglickém jazyce

    Machine learning model design for high performance cloud computing & load balancing resiliency: An innovative approach

  • Popis výsledku anglicky

    High performance computing is now a major area where business and computing technologies need resilient high performance to meet business continuity and real-time needs. However, many top-level business and technology organizations are still in the process of improving high performance and traffic resiliency to ensure the availability of the system at all times. Machine learning is an important advancement of computer technology that helps in decision making by prediction and classification mechanism based on historical data. In this paper, we propose and integrate the concept of high-performance computing with artificial intelligence machine learning techniques in cloud platforms. The networking and computing performance data are used to validate, predict and classify the traffic and performance patterns and ensure system performance and continuous traffic flow resiliency decisions. The proposed integrated design approach has been analyzed on different step actions and decisions based on machine learning regression and classification models, which auto-correct the performance of the system at real run time instances. Our machine learning integrated design simulated results show its traffic resilience performs proactively 38.15% faster with respect to the failure point recovery along with 7.5% business cost savings as compared to today&apos;s existing non-machine learning based design models. (C) 2022 The Author(s)

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of King Saud University - Computer and Information Sciences

  • ISSN

    1319-1578

  • e-ISSN

    1319-1578

  • Svazek periodika

    Volume 34

  • Číslo periodika v rámci svazku

    Issue 10

  • Stát vydavatele periodika

    SA - Království Saúdská Arábie

  • Počet stran výsledku

    19

  • Strana od-do

    "9991 "- 10009

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85140585768