Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Solving Business Decision-Making Problems with an Implementation of Azure Machine Learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28120%2F16%3A43874871" target="_blank" >RIV/70883521:28120/16:43874871 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Solving Business Decision-Making Problems with an Implementation of Azure Machine Learning

  • Popis výsledku v původním jazyce

    Business decision making is always risky and critical. The optimization of profit or cost is not guaranteed unless decisions are taken in the right time and the right way. Therefore, business decision-making is mostly supported by mathematical or statistical techniques. With the development of the technology, some business decisions-making models are developed to facilitate managers to take their decisions. The aim of this paper is to introduce a decision tree regression model built on the Azure Machine Learning platform and use it to predict and compare the performance of telecommunication industry between Mexico and Sri Lanka. Data related to telecommunication industry from both countries were collected from various reliable secondary sources. Data analysis was carried out in Azure Machine Learning. Results of the model indicated the ability of the model in terms of forecasting information, in this case, mobile cellphone subscriptions, which can be used by companies or the government to develop new technologies, offer new services or plan budgets. Results further reflected that managers of any business field can make predictions based on these models to make their decisions effectively at very high accuracy levels. However, other kind of projects can also be identified in order to test and apply these techniques in the solution of real-life problems, including those from the non-computer related fields of study.

  • Název v anglickém jazyce

    Solving Business Decision-Making Problems with an Implementation of Azure Machine Learning

  • Popis výsledku anglicky

    Business decision making is always risky and critical. The optimization of profit or cost is not guaranteed unless decisions are taken in the right time and the right way. Therefore, business decision-making is mostly supported by mathematical or statistical techniques. With the development of the technology, some business decisions-making models are developed to facilitate managers to take their decisions. The aim of this paper is to introduce a decision tree regression model built on the Azure Machine Learning platform and use it to predict and compare the performance of telecommunication industry between Mexico and Sri Lanka. Data related to telecommunication industry from both countries were collected from various reliable secondary sources. Data analysis was carried out in Azure Machine Learning. Results of the model indicated the ability of the model in terms of forecasting information, in this case, mobile cellphone subscriptions, which can be used by companies or the government to develop new technologies, offer new services or plan budgets. Results further reflected that managers of any business field can make predictions based on these models to make their decisions effectively at very high accuracy levels. However, other kind of projects can also be identified in order to test and apply these techniques in the solution of real-life problems, including those from the non-computer related fields of study.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    AE - Řízení, správa a administrativa

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Conference Proceedings the 12th Annual International Bata Conference for Ph.D. Students and Young Researchers

  • ISBN

    978-80-7454-592-4

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    13

  • Strana od-do

    42 - 56

  • Název nakladatele

    Univerzita Tomáše Bati ve Zlíně, Fakulta managementu a ekonomiky

  • Místo vydání

    Zlín

  • Místo konání akce

    Zlín

  • Datum konání akce

    28. 4. 2016

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku