'Fingerprints' of four crop models as affected by soil input data aggregation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F14%3A00230502" target="_blank" >RIV/62156489:43210/14:00230502 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67179843:_____/14:00433077
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S1161030114000914" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1161030114000914</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eja.2014.07.005" target="_blank" >10.1016/j.eja.2014.07.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
'Fingerprints' of four crop models as affected by soil input data aggregation
Popis výsledku v původním jazyce
The spatial variability of soil properties is an important driver of yield variability at both field and regional scale. Thus, when using crop growth simulation models, the choice of spatial resolution of soil input data might be key in order to accurately reproduce observed yield variability. In this study we used four crop models (SIMPLACE<LINTUL-SLIM>, DSSAT-CSM, EPIC and DAISY) differing in the detail of modeling above-ground biomass and yield as well as of modeling soil water dynamics, water uptakeand drought effects on plants to simulate winter wheat in two (agro-climatologically and geo-morphologically) contrasting regions of the federal state of North-Rhine-Westphalia (Germany) for the period from 1995 to 2008. Three spatial resolutions of soil input data were taken into consideration, corresponding to the following map scales: 1:50 000, 1:300 000 and 1:1 000 000. The four crop models were run for water-limited production conditions and model results were evaluated in the form
Název v anglickém jazyce
'Fingerprints' of four crop models as affected by soil input data aggregation
Popis výsledku anglicky
The spatial variability of soil properties is an important driver of yield variability at both field and regional scale. Thus, when using crop growth simulation models, the choice of spatial resolution of soil input data might be key in order to accurately reproduce observed yield variability. In this study we used four crop models (SIMPLACE<LINTUL-SLIM>, DSSAT-CSM, EPIC and DAISY) differing in the detail of modeling above-ground biomass and yield as well as of modeling soil water dynamics, water uptakeand drought effects on plants to simulate winter wheat in two (agro-climatologically and geo-morphologically) contrasting regions of the federal state of North-Rhine-Westphalia (Germany) for the period from 1995 to 2008. Three spatial resolutions of soil input data were taken into consideration, corresponding to the following map scales: 1:50 000, 1:300 000 and 1:1 000 000. The four crop models were run for water-limited production conditions and model results were evaluated in the form
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
DG - Vědy o atmosféře, meteorologie
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Agronomy
ISSN
1161-0301
e-ISSN
—
Svazek periodika
61
Číslo periodika v rámci svazku
November 2014
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
35-48
Kód UT WoS článku
344206100004
EID výsledku v databázi Scopus
—