Characteristic 'fingerprints' of crop model responses data at different spatial resolutions to weather input
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67179843%3A_____%2F13%3A00395764" target="_blank" >RIV/67179843:_____/13:00395764 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.eja.2013.04.003" target="_blank" >http://dx.doi.org/10.1016/j.eja.2013.04.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eja.2013.04.003" target="_blank" >10.1016/j.eja.2013.04.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Characteristic 'fingerprints' of crop model responses data at different spatial resolutions to weather input
Popis výsledku v původním jazyce
Crop growth simulation models are increasingly used for regionally assessing the effects of climate change and variability on crop yields. These models require spatially and temporally detailed, location-specific, environmental (weather and soil) and management data as inputs, which are often difficult to obtain consistently for larger regions. Aggregating the resolution of input data for crop model applications may increase the uncertainty of simulations to an extent that is not well understood. The present study aims to systematically analyse the effect of changes in the spatial resolution of weather input data on yields simulated by four crop models (LINTUL-SLIM, DSSAT-CSM, EPIC and WOFOST) which were utilized to test possible interactions between weather input data resolution and specific modelling approaches representing different degrees of complexity. The models were applied to simulate grain yield of spring barley in Finland for 12 years between 1994 and 2005 considering five s
Název v anglickém jazyce
Characteristic 'fingerprints' of crop model responses data at different spatial resolutions to weather input
Popis výsledku anglicky
Crop growth simulation models are increasingly used for regionally assessing the effects of climate change and variability on crop yields. These models require spatially and temporally detailed, location-specific, environmental (weather and soil) and management data as inputs, which are often difficult to obtain consistently for larger regions. Aggregating the resolution of input data for crop model applications may increase the uncertainty of simulations to an extent that is not well understood. The present study aims to systematically analyse the effect of changes in the spatial resolution of weather input data on yields simulated by four crop models (LINTUL-SLIM, DSSAT-CSM, EPIC and WOFOST) which were utilized to test possible interactions between weather input data resolution and specific modelling approaches representing different degrees of complexity. The models were applied to simulate grain yield of spring barley in Finland for 12 years between 1994 and 2005 considering five s
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
EH - Ekologie – společenstva
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Agronomy
ISSN
1161-0301
e-ISSN
—
Svazek periodika
49
Číslo periodika v rámci svazku
AUG 2013
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
104-114
Kód UT WoS článku
000320746500011
EID výsledku v databázi Scopus
—