Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Use of unmanned aerial remote sensing for in-season diagnosis of winter wheat nitrogen status

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F21%3A43921654" target="_blank" >RIV/62156489:43210/21:43921654 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://mendelnet.cz/media/mnet_2021_full.pdf" target="_blank" >https://mendelnet.cz/media/mnet_2021_full.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Use of unmanned aerial remote sensing for in-season diagnosis of winter wheat nitrogen status

  • Popis výsledku v původním jazyce

    Unmanned aerial survey allows more precise diagnosis of the plants in the site-specific crop management by the ultra-high spatial resolution of raster data. This study is focused on the selection of the most suitable sampling size by analysis of multispectral UAV images and its comparison with Sentinel-2 satellite data, both aimed on the diagnosis of the nutritional status of winter wheat. The data used for this study were collected in 2020 from the field experiment located in Kojčice (Pelhřimov, Czech Republic) on two plots with the area of 16.2 ha and 12.1 ha. The survey was realized by plant sampling in irregular grid for estimation of N content, total biomass, Nitrogen uptake (Nupt) and Nitrogen Nutrition Index (NNI) in two vegetation stages important for the application of nitrogen fertilizers to cereals (BBCH 31, BBCH 51). Simultaneously, aerial imaging was carried out by UAV equipped with a MicaSense Altum multispectral camera. The results of statistical evaluation by correlation and regression analysis showed a significant relationship between the monitored crop parameters and vegetation indices from UAV survey and from Sentinel-2 images. Higher sensitivity to the amount of aboveground biomass was proved by the NDVI and SRI indices, on the other hand, the NDRE and RENDVI indices showed higher correlations to the Nupt. The comparison of different buffer zone analysis of UAV data showed the improvement of the estimation accuracy by the increase of the sampling size to the 10 m. Explanation of this result requires further study concentrating on the detailed investigation of the micro-variability of crop parameters within the sampling site.

  • Název v anglickém jazyce

    Use of unmanned aerial remote sensing for in-season diagnosis of winter wheat nitrogen status

  • Popis výsledku anglicky

    Unmanned aerial survey allows more precise diagnosis of the plants in the site-specific crop management by the ultra-high spatial resolution of raster data. This study is focused on the selection of the most suitable sampling size by analysis of multispectral UAV images and its comparison with Sentinel-2 satellite data, both aimed on the diagnosis of the nutritional status of winter wheat. The data used for this study were collected in 2020 from the field experiment located in Kojčice (Pelhřimov, Czech Republic) on two plots with the area of 16.2 ha and 12.1 ha. The survey was realized by plant sampling in irregular grid for estimation of N content, total biomass, Nitrogen uptake (Nupt) and Nitrogen Nutrition Index (NNI) in two vegetation stages important for the application of nitrogen fertilizers to cereals (BBCH 31, BBCH 51). Simultaneously, aerial imaging was carried out by UAV equipped with a MicaSense Altum multispectral camera. The results of statistical evaluation by correlation and regression analysis showed a significant relationship between the monitored crop parameters and vegetation indices from UAV survey and from Sentinel-2 images. Higher sensitivity to the amount of aboveground biomass was proved by the NDVI and SRI indices, on the other hand, the NDRE and RENDVI indices showed higher correlations to the Nupt. The comparison of different buffer zone analysis of UAV data showed the improvement of the estimation accuracy by the increase of the sampling size to the 10 m. Explanation of this result requires further study concentrating on the detailed investigation of the micro-variability of crop parameters within the sampling site.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    40101 - Agriculture

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    MendelNet 2021: Proceedings of International PhD Students Conference

  • ISBN

    978-80-7509-821-4

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    37-42

  • Název nakladatele

    Mendelova univerzita v Brně

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    10. 11. 2021

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku