Estimation of crop nutritional status by UAV survey for site specific crop management
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F20%3A43919517" target="_blank" >RIV/62156489:43210/20:43919517 - isvavai.cz</a>
Výsledek na webu
<a href="https://mnet.mendelu.cz/mendelnet2020/mnet_2020_full.pdf" target="_blank" >https://mnet.mendelu.cz/mendelnet2020/mnet_2020_full.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimation of crop nutritional status by UAV survey for site specific crop management
Popis výsledku v původním jazyce
This study is focused on the evaluation of UAV multispectral imaging for the diagnosis of nutritional status of winter wheat in precision agriculture. A field experiment was conducted in 2018 on two plots with the total area of 36 ha and 2019 at one plot with area 41.38 ha in ZD Kojcice (Pelhrimov, Czech Republic). During the vegetation period the field survey was carried out in stem elongation (BBCH 31) and heading (BBCH 51), both important vegetation stages for application of nitrogen fertilizers. The plant samples were taken on 56 and 53 sampling points distributed across the high - and low yielded zones and later analyzed for nitrogen content in plant tissues and total amount of above-ground biomass (fresh, dry). Simultaneously, unmanned aerial imaging was carried out by multispectral cameras Micasense RedEdge or Parrot Sequoia and the images were processed in photogrammetric software to create seamless ortho-mosaic in individual spectral bands (G, R, RE, NIR). A set of vegetation indices (NDVI, GNDVI, NDRE, NRERI, SAVI, MSAVI, EVI, EVI2, etc.) was calculated from these data and the mean value estimated by zonal statistics from 2m buffer zone around each sampling points. The statistical evaluation by correlation and regression analysis showed significant relationship between crop parameters and vegetation indices from UAV survey, thus it can be said that traditional field monitoring could be replaced by UAV survey even at a low number of calibration points. From the set of vegetation indices, NDVI showed better correlation values to estimate the amount of plant biomass, while the most sensitive vegetation index for estimation of nitrogen content in plants was NDRE index.
Název v anglickém jazyce
Estimation of crop nutritional status by UAV survey for site specific crop management
Popis výsledku anglicky
This study is focused on the evaluation of UAV multispectral imaging for the diagnosis of nutritional status of winter wheat in precision agriculture. A field experiment was conducted in 2018 on two plots with the total area of 36 ha and 2019 at one plot with area 41.38 ha in ZD Kojcice (Pelhrimov, Czech Republic). During the vegetation period the field survey was carried out in stem elongation (BBCH 31) and heading (BBCH 51), both important vegetation stages for application of nitrogen fertilizers. The plant samples were taken on 56 and 53 sampling points distributed across the high - and low yielded zones and later analyzed for nitrogen content in plant tissues and total amount of above-ground biomass (fresh, dry). Simultaneously, unmanned aerial imaging was carried out by multispectral cameras Micasense RedEdge or Parrot Sequoia and the images were processed in photogrammetric software to create seamless ortho-mosaic in individual spectral bands (G, R, RE, NIR). A set of vegetation indices (NDVI, GNDVI, NDRE, NRERI, SAVI, MSAVI, EVI, EVI2, etc.) was calculated from these data and the mean value estimated by zonal statistics from 2m buffer zone around each sampling points. The statistical evaluation by correlation and regression analysis showed significant relationship between crop parameters and vegetation indices from UAV survey, thus it can be said that traditional field monitoring could be replaced by UAV survey even at a low number of calibration points. From the set of vegetation indices, NDVI showed better correlation values to estimate the amount of plant biomass, while the most sensitive vegetation index for estimation of nitrogen content in plants was NDRE index.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
40106 - Agronomy, plant breeding and plant protection; (Agricultural biotechnology to be 4.4)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
MendelNet 2020: Proceedings of International PhD Students Conference
ISBN
978-80-7509-765-1
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
26-31
Název nakladatele
Mendelova univerzita v Brně
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
11. 11. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—