Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Improving the detection limit in capillary isotachophoresis using asymmetric neutralisation reaction boundary

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F22%3A43920395" target="_blank" >RIV/62156489:43210/22:43920395 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1002/elps.202000398" target="_blank" >https://doi.org/10.1002/elps.202000398</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/elps.202000398" target="_blank" >10.1002/elps.202000398</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Improving the detection limit in capillary isotachophoresis using asymmetric neutralisation reaction boundary

  • Popis výsledku v původním jazyce

    An on-line method involving transient electrokinetic dosing and ITP with neutralisation reaction boundary (NRB) and/or carrier ampholyte-free isoelectric focusing (CAF IEF) was developed for the pre-concentration, pre-separation, and analytical determination of glyphosate in aqueous samples containing low concentrations of the analyte of interest. Various parameters were investigated in the framework of an optimisation study with the aim of achieving the maximum concentration limit of detection (cLOD) decrease in minimum time. The proposed method used CAF IEF and/or ITP with NRB. The sample was dosed to the column on the stationary reaction boundary (CAF IEF) and/or moving reaction boundary (ITP with NRB), whereat a sharp pH step exists. Here, charge reversal was due to the ampholytes and/or acid accumulation occurred because of charge loss. Similarly, the accumulated sample was mobilised with TE and analysed using classical ITP in the second analytical column. Glyphosate (GLY), the analyte of interest, was chosen as a model substance for ITP with NRB and pre-concentration as well as focusing pre-concentration and CAF IEF using the asymmetric purpose-built NRB. On one side of the asymmetric boundary was the zone of acidic pH; while the opposite side comprised a neutral/basic non-conductive zone of the ampholyte-in this case, GLY. Such an arrangement enables the utilisation of a lower pH on the acidic side, which allows the focusing of strongly acidic ampholytes and the accumulation of weak acids. The electrolyte composition and the dosing time were optimised, and a 14-fold accumulation was achieved in 25 min compared to that by classical ITP and a 180-fold accumulation was achieved through CAF IEF and pre-concentration with a glyphosate sample. Both methods are simple and can be conducted using all commercial ITP systems.

  • Název v anglickém jazyce

    Improving the detection limit in capillary isotachophoresis using asymmetric neutralisation reaction boundary

  • Popis výsledku anglicky

    An on-line method involving transient electrokinetic dosing and ITP with neutralisation reaction boundary (NRB) and/or carrier ampholyte-free isoelectric focusing (CAF IEF) was developed for the pre-concentration, pre-separation, and analytical determination of glyphosate in aqueous samples containing low concentrations of the analyte of interest. Various parameters were investigated in the framework of an optimisation study with the aim of achieving the maximum concentration limit of detection (cLOD) decrease in minimum time. The proposed method used CAF IEF and/or ITP with NRB. The sample was dosed to the column on the stationary reaction boundary (CAF IEF) and/or moving reaction boundary (ITP with NRB), whereat a sharp pH step exists. Here, charge reversal was due to the ampholytes and/or acid accumulation occurred because of charge loss. Similarly, the accumulated sample was mobilised with TE and analysed using classical ITP in the second analytical column. Glyphosate (GLY), the analyte of interest, was chosen as a model substance for ITP with NRB and pre-concentration as well as focusing pre-concentration and CAF IEF using the asymmetric purpose-built NRB. On one side of the asymmetric boundary was the zone of acidic pH; while the opposite side comprised a neutral/basic non-conductive zone of the ampholyte-in this case, GLY. Such an arrangement enables the utilisation of a lower pH on the acidic side, which allows the focusing of strongly acidic ampholytes and the accumulation of weak acids. The electrolyte composition and the dosing time were optimised, and a 14-fold accumulation was achieved in 25 min compared to that by classical ITP and a 180-fold accumulation was achieved through CAF IEF and pre-concentration with a glyphosate sample. Both methods are simple and can be conducted using all commercial ITP systems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10406 - Analytical chemistry

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Electrophoresis

  • ISSN

    0173-0835

  • e-ISSN

    1522-2683

  • Svazek periodika

    43

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

    417-424

  • Kód UT WoS článku

    000709191700001

  • EID výsledku v databázi Scopus

    2-s2.0-85117376664