Use of remote sensing data for crop monitoring in precision agriculture
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F23%3A43924531" target="_blank" >RIV/62156489:43210/23:43924531 - isvavai.cz</a>
Výsledek na webu
<a href="https://agrofor.ues.rs.ba/data/20231227-05_Suslikova.pdf" target="_blank" >https://agrofor.ues.rs.ba/data/20231227-05_Suslikova.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Use of remote sensing data for crop monitoring in precision agriculture
Popis výsledku v původním jazyce
Precision agriculture is the modern way of farming that uses knowledge of the heterogeneity of soil conditions and crop vigour within the fields for site-specific crop management. In this study, various multispectral remote sensing methods are compared for monitoring of crop development and plant diagnosis. The primary source of information is freely available data from the Sentinel-2 satellite system, which records the earth's surface in 13 spectral bands, including bands with high sensitivity to vegetation parameters (red-edge). The revisit time is approximately 3-4 days, and the spatial resolution is 10 m (Blue light-B, Green light - G, Red light -R, Near Infrared - NIR) and 20 m per pixel (Red-Edge - RE, Short-wave infrared -SWIR). The results of the assessment of crop condition from the field experiments carried out in 2021-2023 at two sites in the Czech Republic funded by research projects AF-IGA2023-IP-036 and TAČR SS01020309 showed a high level of correlation between vegetation indices calculated from multispectral images and vegetation parameters such as aboveground biomass or nitrogen uptake. The highest values were obtained using red-edge vegetation indices, such as Normalized Difference Red Edge Index (NDRE), Normalized Difference Moisture Index (NDMI), Enhanced Vegetation Index (EVI). Thus, satellite data can be used to prepare the prescription maps for variable rate application of fertilizers or growth regulators. If more detailed data are required, or in case of unavailability of satellite data due to cloud cover, multispectral unmanned imaging by drones is an option. It provides high operative monitoring to obtain RGB and multispectral orthomosaics with an ultra-high spatial resolution of a few cm without influence of cloud occurrence.
Název v anglickém jazyce
Use of remote sensing data for crop monitoring in precision agriculture
Popis výsledku anglicky
Precision agriculture is the modern way of farming that uses knowledge of the heterogeneity of soil conditions and crop vigour within the fields for site-specific crop management. In this study, various multispectral remote sensing methods are compared for monitoring of crop development and plant diagnosis. The primary source of information is freely available data from the Sentinel-2 satellite system, which records the earth's surface in 13 spectral bands, including bands with high sensitivity to vegetation parameters (red-edge). The revisit time is approximately 3-4 days, and the spatial resolution is 10 m (Blue light-B, Green light - G, Red light -R, Near Infrared - NIR) and 20 m per pixel (Red-Edge - RE, Short-wave infrared -SWIR). The results of the assessment of crop condition from the field experiments carried out in 2021-2023 at two sites in the Czech Republic funded by research projects AF-IGA2023-IP-036 and TAČR SS01020309 showed a high level of correlation between vegetation indices calculated from multispectral images and vegetation parameters such as aboveground biomass or nitrogen uptake. The highest values were obtained using red-edge vegetation indices, such as Normalized Difference Red Edge Index (NDRE), Normalized Difference Moisture Index (NDMI), Enhanced Vegetation Index (EVI). Thus, satellite data can be used to prepare the prescription maps for variable rate application of fertilizers or growth regulators. If more detailed data are required, or in case of unavailability of satellite data due to cloud cover, multispectral unmanned imaging by drones is an option. It provides high operative monitoring to obtain RGB and multispectral orthomosaics with an ultra-high spatial resolution of a few cm without influence of cloud occurrence.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
40101 - Agriculture
Návaznosti výsledku
Projekt
<a href="/cs/project/SS01020309" target="_blank" >SS01020309: Precizní zemědělství na pozemcích s regulovaným drenážním odtokem jako nástroj pro ochranu vod a zvýšení efektivity rostlinné výroby</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
AGROFOR International Journal
ISSN
2490-3434
e-ISSN
2490-3442
Svazek periodika
8
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
BA - Bosna a Hercegovina
Počet stran výsledku
8
Strana od-do
41-48
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—