Value of NMR Parameters and DFT Calculations for Quantum Information Processing Utilizing Phosphorus Heterocycles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50005695" target="_blank" >RIV/62690094:18450/17:50005695 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1021/acs.jpca.6b12728" target="_blank" >http://dx.doi.org/10.1021/acs.jpca.6b12728</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpca.6b12728" target="_blank" >10.1021/acs.jpca.6b12728</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Value of NMR Parameters and DFT Calculations for Quantum Information Processing Utilizing Phosphorus Heterocycles
Popis výsledku v původním jazyce
Quantum computing is the field of science that uses quantum-mechanical phenomena, such as superposition and entanglement, to perform operations on data. The fundamental information unit used in quantum computing is the quantum bit or qubit. It is well-known that quantum computers could theoretically be able to solve problems much more quickly than any classical computers. Currently, the first and still the most successful implementations of quantum information processing (QIP) have been based on nuclear spins in liquids. However, molecules that enable many qubits NMR QIP implementations should meet some conditions: have large chemical shifts and be appropriately dispersed for qubit addressability, appreciable spin-spin coupling between any pair of spins, and a long relaxation time. In this line, Benzyldene-2,3-dihydro-1H- [1,3]diphosphole (BDF) derivatives have been theoretically tested for maximizing large chemical shifts, spin-spin coupling, and minimizing the hyperfine coupling constant. Thus, the structures were optimized at the B3LYP/6-311G(d,p) level and showed a significant similarity with the experimental geometrical parameters. The NMR spectroscopic parameters (δ and J) were calculated with six different DFT functionals. The τ-HCTH/6-31G(2d) level is in better agreement with the experimental data of 31P and 13C chemical shifts. While PCM-B3LYP/cc-pVDZ level shows a decrease on deviation between calculated and experimental values for P-P and P-C SSCC. The Surface Response technique was employed to rationalize how the hyperfine constant varies with the chemical shifts and coupling constants values. From our findings, BDFNO2 was the best candidate for NMR quantum computations (NMR-QC) among the studied series.
Název v anglickém jazyce
Value of NMR Parameters and DFT Calculations for Quantum Information Processing Utilizing Phosphorus Heterocycles
Popis výsledku anglicky
Quantum computing is the field of science that uses quantum-mechanical phenomena, such as superposition and entanglement, to perform operations on data. The fundamental information unit used in quantum computing is the quantum bit or qubit. It is well-known that quantum computers could theoretically be able to solve problems much more quickly than any classical computers. Currently, the first and still the most successful implementations of quantum information processing (QIP) have been based on nuclear spins in liquids. However, molecules that enable many qubits NMR QIP implementations should meet some conditions: have large chemical shifts and be appropriately dispersed for qubit addressability, appreciable spin-spin coupling between any pair of spins, and a long relaxation time. In this line, Benzyldene-2,3-dihydro-1H- [1,3]diphosphole (BDF) derivatives have been theoretically tested for maximizing large chemical shifts, spin-spin coupling, and minimizing the hyperfine coupling constant. Thus, the structures were optimized at the B3LYP/6-311G(d,p) level and showed a significant similarity with the experimental geometrical parameters. The NMR spectroscopic parameters (δ and J) were calculated with six different DFT functionals. The τ-HCTH/6-31G(2d) level is in better agreement with the experimental data of 31P and 13C chemical shifts. While PCM-B3LYP/cc-pVDZ level shows a decrease on deviation between calculated and experimental values for P-P and P-C SSCC. The Surface Response technique was employed to rationalize how the hyperfine constant varies with the chemical shifts and coupling constants values. From our findings, BDFNO2 was the best candidate for NMR quantum computations (NMR-QC) among the studied series.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of physical chemistry A
ISSN
1089-5639
e-ISSN
—
Svazek periodika
121
Číslo periodika v rámci svazku
23
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
4486-4495
Kód UT WoS článku
000403732100011
EID výsledku v databázi Scopus
2-s2.0-85021654088