Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Value of NMR Parameters and DFT Calculations for Quantum Information Processing Utilizing Phosphorus Heterocycles

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50005695" target="_blank" >RIV/62690094:18450/17:50005695 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1021/acs.jpca.6b12728" target="_blank" >http://dx.doi.org/10.1021/acs.jpca.6b12728</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jpca.6b12728" target="_blank" >10.1021/acs.jpca.6b12728</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Value of NMR Parameters and DFT Calculations for Quantum Information Processing Utilizing Phosphorus Heterocycles

  • Popis výsledku v původním jazyce

    Quantum computing is the field of science that uses quantum-mechanical phenomena, such as superposition and entanglement, to perform operations on data. The fundamental information unit used in quantum computing is the quantum bit or qubit. It is well-known that quantum computers could theoretically be able to solve problems much more quickly than any classical computers. Currently, the first and still the most successful implementations of quantum information processing (QIP) have been based on nuclear spins in liquids. However, molecules that enable many qubits NMR QIP implementations should meet some conditions: have large chemical shifts and be appropriately dispersed for qubit addressability, appreciable spin-spin coupling between any pair of spins, and a long relaxation time. In this line, Benzyldene-2,3-dihydro-1H- [1,3]diphosphole (BDF) derivatives have been theoretically tested for maximizing large chemical shifts, spin-spin coupling, and minimizing the hyperfine coupling constant. Thus, the structures were optimized at the B3LYP/6-311G(d,p) level and showed a significant similarity with the experimental geometrical parameters. The NMR spectroscopic parameters (δ and J) were calculated with six different DFT functionals. The τ-HCTH/6-31G(2d) level is in better agreement with the experimental data of 31P and 13C chemical shifts. While PCM-B3LYP/cc-pVDZ level shows a decrease on deviation between calculated and experimental values for P-P and P-C SSCC. The Surface Response technique was employed to rationalize how the hyperfine constant varies with the chemical shifts and coupling constants values. From our findings, BDFNO2 was the best candidate for NMR quantum computations (NMR-QC) among the studied series.

  • Název v anglickém jazyce

    Value of NMR Parameters and DFT Calculations for Quantum Information Processing Utilizing Phosphorus Heterocycles

  • Popis výsledku anglicky

    Quantum computing is the field of science that uses quantum-mechanical phenomena, such as superposition and entanglement, to perform operations on data. The fundamental information unit used in quantum computing is the quantum bit or qubit. It is well-known that quantum computers could theoretically be able to solve problems much more quickly than any classical computers. Currently, the first and still the most successful implementations of quantum information processing (QIP) have been based on nuclear spins in liquids. However, molecules that enable many qubits NMR QIP implementations should meet some conditions: have large chemical shifts and be appropriately dispersed for qubit addressability, appreciable spin-spin coupling between any pair of spins, and a long relaxation time. In this line, Benzyldene-2,3-dihydro-1H- [1,3]diphosphole (BDF) derivatives have been theoretically tested for maximizing large chemical shifts, spin-spin coupling, and minimizing the hyperfine coupling constant. Thus, the structures were optimized at the B3LYP/6-311G(d,p) level and showed a significant similarity with the experimental geometrical parameters. The NMR spectroscopic parameters (δ and J) were calculated with six different DFT functionals. The τ-HCTH/6-31G(2d) level is in better agreement with the experimental data of 31P and 13C chemical shifts. While PCM-B3LYP/cc-pVDZ level shows a decrease on deviation between calculated and experimental values for P-P and P-C SSCC. The Surface Response technique was employed to rationalize how the hyperfine constant varies with the chemical shifts and coupling constants values. From our findings, BDFNO2 was the best candidate for NMR quantum computations (NMR-QC) among the studied series.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of physical chemistry A

  • ISSN

    1089-5639

  • e-ISSN

  • Svazek periodika

    121

  • Číslo periodika v rámci svazku

    23

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    4486-4495

  • Kód UT WoS článku

    000403732100011

  • EID výsledku v databázi Scopus

    2-s2.0-85021654088