Exploring Through-Space Spin-Spin Couplings for Quantum Information Processing: Facing the Challenge of Coherence Time and Control Quantum States
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F19%3A50015649" target="_blank" >RIV/62690094:18450/19:50015649 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jpca.8b09425" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpca.8b09425</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpca.8b09425" target="_blank" >10.1021/acs.jpca.8b09425</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploring Through-Space Spin-Spin Couplings for Quantum Information Processing: Facing the Challenge of Coherence Time and Control Quantum States
Popis výsledku v původním jazyce
Nuclear magnetic resonance (NMR) is a powerful tool for studying quantum information processing (QJP). Recently quantum technologies have been proposed to overcome the challenges in large-scale NMR QIP. Furthermore, computational chemistry can promote its improvement. Nuclear spins-1/2 are natural qubits and have been used in most NMR quantum computation experiments. However, molecules that enable many qubits NMR QIP implementations should meet some requirements regarding their spectroscopic properties. Exceptionally large through-space (TS) P-P spin-spin coupling constants (SSCC or J) observed in 1,8-diphosphanaphthalenes (PPN) and in naphtho[1,8-cd]-1,2-dithiole phenylphosphines (NTP) were proposed and investigated to provide more accurate control within large-scale NMR QIP. Spectroscopic properties of PPN and NTP derivatives were explored by theoretical strategies using locally dense basis sets (LDBS). P-31 chemical shifts (delta) calculated at the B3LYP/aug-cc-pVTZ-J level and TS P-P SSCCs at the PBE1PBE/pcJ-2 (LDBS-1) level are very close to the experimental data for the PPN molecule. Differently, for the NTP dimer, PBE1PBE/pcJ-2 (LDBS-2) predicts more accurate P-31 (5, whereas PBE1PBE/Def2-TZVP (LDBS-1) forecasts more accurate TS P-P SSCCs. From our results, PPNo-F, PPNo-ethyl, and PPNo-NH2 were the best candidates for NMR QIP, in which the large TS SSCCS could face the need of long-time quantum gates implementations. Therefore, it could overcome natural limitations concerning the development of large-scale NMR.
Název v anglickém jazyce
Exploring Through-Space Spin-Spin Couplings for Quantum Information Processing: Facing the Challenge of Coherence Time and Control Quantum States
Popis výsledku anglicky
Nuclear magnetic resonance (NMR) is a powerful tool for studying quantum information processing (QJP). Recently quantum technologies have been proposed to overcome the challenges in large-scale NMR QIP. Furthermore, computational chemistry can promote its improvement. Nuclear spins-1/2 are natural qubits and have been used in most NMR quantum computation experiments. However, molecules that enable many qubits NMR QIP implementations should meet some requirements regarding their spectroscopic properties. Exceptionally large through-space (TS) P-P spin-spin coupling constants (SSCC or J) observed in 1,8-diphosphanaphthalenes (PPN) and in naphtho[1,8-cd]-1,2-dithiole phenylphosphines (NTP) were proposed and investigated to provide more accurate control within large-scale NMR QIP. Spectroscopic properties of PPN and NTP derivatives were explored by theoretical strategies using locally dense basis sets (LDBS). P-31 chemical shifts (delta) calculated at the B3LYP/aug-cc-pVTZ-J level and TS P-P SSCCs at the PBE1PBE/pcJ-2 (LDBS-1) level are very close to the experimental data for the PPN molecule. Differently, for the NTP dimer, PBE1PBE/pcJ-2 (LDBS-2) predicts more accurate P-31 (5, whereas PBE1PBE/Def2-TZVP (LDBS-1) forecasts more accurate TS P-P SSCCs. From our results, PPNo-F, PPNo-ethyl, and PPNo-NH2 were the best candidates for NMR QIP, in which the large TS SSCCS could face the need of long-time quantum gates implementations. Therefore, it could overcome natural limitations concerning the development of large-scale NMR.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of physical chemistry A
ISSN
1089-5639
e-ISSN
—
Svazek periodika
123
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
1372-1379
Kód UT WoS článku
000459836600012
EID výsledku v databázi Scopus
2-s2.0-85061973300