Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Exploring Through-Space Spin-Spin Couplings for Quantum Information Processing: Facing the Challenge of Coherence Time and Control Quantum States

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F19%3A50015649" target="_blank" >RIV/62690094:18450/19:50015649 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://pubs.acs.org/doi/10.1021/acs.jpca.8b09425" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpca.8b09425</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jpca.8b09425" target="_blank" >10.1021/acs.jpca.8b09425</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Exploring Through-Space Spin-Spin Couplings for Quantum Information Processing: Facing the Challenge of Coherence Time and Control Quantum States

  • Popis výsledku v původním jazyce

    Nuclear magnetic resonance (NMR) is a powerful tool for studying quantum information processing (QJP). Recently quantum technologies have been proposed to overcome the challenges in large-scale NMR QIP. Furthermore, computational chemistry can promote its improvement. Nuclear spins-1/2 are natural qubits and have been used in most NMR quantum computation experiments. However, molecules that enable many qubits NMR QIP implementations should meet some requirements regarding their spectroscopic properties. Exceptionally large through-space (TS) P-P spin-spin coupling constants (SSCC or J) observed in 1,8-diphosphanaphthalenes (PPN) and in naphtho[1,8-cd]-1,2-dithiole phenylphosphines (NTP) were proposed and investigated to provide more accurate control within large-scale NMR QIP. Spectroscopic properties of PPN and NTP derivatives were explored by theoretical strategies using locally dense basis sets (LDBS). P-31 chemical shifts (delta) calculated at the B3LYP/aug-cc-pVTZ-J level and TS P-P SSCCs at the PBE1PBE/pcJ-2 (LDBS-1) level are very close to the experimental data for the PPN molecule. Differently, for the NTP dimer, PBE1PBE/pcJ-2 (LDBS-2) predicts more accurate P-31 (5, whereas PBE1PBE/Def2-TZVP (LDBS-1) forecasts more accurate TS P-P SSCCs. From our results, PPNo-F, PPNo-ethyl, and PPNo-NH2 were the best candidates for NMR QIP, in which the large TS SSCCS could face the need of long-time quantum gates implementations. Therefore, it could overcome natural limitations concerning the development of large-scale NMR.

  • Název v anglickém jazyce

    Exploring Through-Space Spin-Spin Couplings for Quantum Information Processing: Facing the Challenge of Coherence Time and Control Quantum States

  • Popis výsledku anglicky

    Nuclear magnetic resonance (NMR) is a powerful tool for studying quantum information processing (QJP). Recently quantum technologies have been proposed to overcome the challenges in large-scale NMR QIP. Furthermore, computational chemistry can promote its improvement. Nuclear spins-1/2 are natural qubits and have been used in most NMR quantum computation experiments. However, molecules that enable many qubits NMR QIP implementations should meet some requirements regarding their spectroscopic properties. Exceptionally large through-space (TS) P-P spin-spin coupling constants (SSCC or J) observed in 1,8-diphosphanaphthalenes (PPN) and in naphtho[1,8-cd]-1,2-dithiole phenylphosphines (NTP) were proposed and investigated to provide more accurate control within large-scale NMR QIP. Spectroscopic properties of PPN and NTP derivatives were explored by theoretical strategies using locally dense basis sets (LDBS). P-31 chemical shifts (delta) calculated at the B3LYP/aug-cc-pVTZ-J level and TS P-P SSCCs at the PBE1PBE/pcJ-2 (LDBS-1) level are very close to the experimental data for the PPN molecule. Differently, for the NTP dimer, PBE1PBE/pcJ-2 (LDBS-2) predicts more accurate P-31 (5, whereas PBE1PBE/Def2-TZVP (LDBS-1) forecasts more accurate TS P-P SSCCs. From our results, PPNo-F, PPNo-ethyl, and PPNo-NH2 were the best candidates for NMR QIP, in which the large TS SSCCS could face the need of long-time quantum gates implementations. Therefore, it could overcome natural limitations concerning the development of large-scale NMR.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of physical chemistry A

  • ISSN

    1089-5639

  • e-ISSN

  • Svazek periodika

    123

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

    1372-1379

  • Kód UT WoS článku

    000459836600012

  • EID výsledku v databázi Scopus

    2-s2.0-85061973300