Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Enhancing NMR Quantum Computation by Exploring Heavy Metal Complexes as Multiqubit Systems: A Theoretical Investigation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50017853" target="_blank" >RIV/62690094:18450/20:50017853 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://pubs.acs.org/doi/abs/10.1021/acs.jpca.0c01607" target="_blank" >https://pubs.acs.org/doi/abs/10.1021/acs.jpca.0c01607</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jpca.0c01607" target="_blank" >10.1021/acs.jpca.0c01607</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Enhancing NMR Quantum Computation by Exploring Heavy Metal Complexes as Multiqubit Systems: A Theoretical Investigation

  • Popis výsledku v původním jazyce

    Assembled together with the most common qubits used in nuclear resonance magnetic (NMR) quantum computation experiments, spin-1/2 nuclei, such as Cd-113, Hg-199, Te-125, and Se-77, could leverage the prospective scalable quantum computer architectures, enabling many and heteronuclear qubits for NMR quantum information processing (QIP) implementations. A computational design strategy for prescreening recently synthesized complexes of cadmium, mercury, tellurium, selenium, and phosphorus (called MRE complexes) as suitable qubit molecules for NMR QIP is reported. Chemical shifts and spin-spin coupling constants (SSCCs) in five MRE complexes were examined using the spin-orbit zeroth order regular approximation (ZORA) at the density functional theory level and the four-component relativistic Dirac-Kohn-Sham approach. In particular, the influence of different conformers, basis sets, exchange-correlation functionals, and methods to treat the relativistic as well as solvent effects were studied. The differences in the chemical shifts and SSCCs between different low energy conformers of the studied complexes were found to be very small. The TZ2P basis set was found to be the optimum choice for the studied chemical shifts, while the TZ2P-J basis set was the best for the couplings studied in this work. The PBE0 exchange-correlation functional exhibited the best performance for the studied MRE complexes. The addition of solvent effects has not improved on the gas phase results in comparison to the experiment, with the exception of the phosphorus chemical shift. The use of MRE complexes as qubit molecules for NMR QIP could face the challenges in single qubit control and multiqubit operations. They exhibit chemical shifts appropriately dispersed, allowing qubit addressability and exceptionally large spin-spin couplings, which could reduce the time of quantum gate operations and likely preserve the coherence.

  • Název v anglickém jazyce

    Enhancing NMR Quantum Computation by Exploring Heavy Metal Complexes as Multiqubit Systems: A Theoretical Investigation

  • Popis výsledku anglicky

    Assembled together with the most common qubits used in nuclear resonance magnetic (NMR) quantum computation experiments, spin-1/2 nuclei, such as Cd-113, Hg-199, Te-125, and Se-77, could leverage the prospective scalable quantum computer architectures, enabling many and heteronuclear qubits for NMR quantum information processing (QIP) implementations. A computational design strategy for prescreening recently synthesized complexes of cadmium, mercury, tellurium, selenium, and phosphorus (called MRE complexes) as suitable qubit molecules for NMR QIP is reported. Chemical shifts and spin-spin coupling constants (SSCCs) in five MRE complexes were examined using the spin-orbit zeroth order regular approximation (ZORA) at the density functional theory level and the four-component relativistic Dirac-Kohn-Sham approach. In particular, the influence of different conformers, basis sets, exchange-correlation functionals, and methods to treat the relativistic as well as solvent effects were studied. The differences in the chemical shifts and SSCCs between different low energy conformers of the studied complexes were found to be very small. The TZ2P basis set was found to be the optimum choice for the studied chemical shifts, while the TZ2P-J basis set was the best for the couplings studied in this work. The PBE0 exchange-correlation functional exhibited the best performance for the studied MRE complexes. The addition of solvent effects has not improved on the gas phase results in comparison to the experiment, with the exception of the phosphorus chemical shift. The use of MRE complexes as qubit molecules for NMR QIP could face the challenges in single qubit control and multiqubit operations. They exhibit chemical shifts appropriately dispersed, allowing qubit addressability and exceptionally large spin-spin couplings, which could reduce the time of quantum gate operations and likely preserve the coherence.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of physical chemistry A

  • ISSN

    1089-5639

  • e-ISSN

  • Svazek periodika

    124

  • Číslo periodika v rámci svazku

    24

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    4946-4955

  • Kód UT WoS článku

    000552664700007

  • EID výsledku v databázi Scopus

    2-s2.0-85086748354