Stampede prediction based on individual activity recognition for context-aware framework sing sensor-fusion in a crowd scenarios
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50013619" target="_blank" >RIV/62690094:18450/17:50013619 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3233/978-1-61499-800-6-385" target="_blank" >http://dx.doi.org/10.3233/978-1-61499-800-6-385</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/978-1-61499-800-6-385" target="_blank" >10.3233/978-1-61499-800-6-385</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stampede prediction based on individual activity recognition for context-aware framework sing sensor-fusion in a crowd scenarios
Popis výsledku v původním jazyce
With the benefits of context-aware and the smartphone's participatory sensing potential, individual activity recognition (IAR) has proven to be enormously importance for stampede prediction in a crowd using a geographical location and global positioning system (GPS) data. In the case of an unforeseen incident and in an emergency situations whether in a small or large gathering. The research effort used Kalman filter to remove uncertainty through sensor fusion to create room for a reliable measurement for abnormality prediction. This paper, addressed the following questions. (i) How to determine the flow direction and the velocity of peoples' movement in a crowd to know when stampede will occur? (ii) What is the role of sensor fusion in a crowd scenario? Two scenarios experimented on IAR with accelerometer, GPS, and digital compass sensors to determine the flow pattern of participants' movement in a crowd using the flow velocity Vsi and flow direction Dsi, in the proposed stampede prediction approach. The experimental results show the effect of Vsi and Dsi for different group locations and serve as a pointer to reduce risk towards mitigation of crowd disaster and enhanced the existing context-aware framework to save human lives in our society if used in crowd scenarios.
Název v anglickém jazyce
Stampede prediction based on individual activity recognition for context-aware framework sing sensor-fusion in a crowd scenarios
Popis výsledku anglicky
With the benefits of context-aware and the smartphone's participatory sensing potential, individual activity recognition (IAR) has proven to be enormously importance for stampede prediction in a crowd using a geographical location and global positioning system (GPS) data. In the case of an unforeseen incident and in an emergency situations whether in a small or large gathering. The research effort used Kalman filter to remove uncertainty through sensor fusion to create room for a reliable measurement for abnormality prediction. This paper, addressed the following questions. (i) How to determine the flow direction and the velocity of peoples' movement in a crowd to know when stampede will occur? (ii) What is the role of sensor fusion in a crowd scenario? Two scenarios experimented on IAR with accelerometer, GPS, and digital compass sensors to determine the flow pattern of participants' movement in a crowd using the flow velocity Vsi and flow direction Dsi, in the proposed stampede prediction approach. The experimental results show the effect of Vsi and Dsi for different group locations and serve as a pointer to reduce risk towards mitigation of crowd disaster and enhanced the existing context-aware framework to save human lives in our society if used in crowd scenarios.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Frontiers in Artificial Intelligence and Applications
ISBN
978-1-61499-799-3
ISSN
0922-6389
e-ISSN
neuvedeno
Počet stran výsledku
12
Strana od-do
385-396
Název nakladatele
IOS press
Místo vydání
Amsterdam
Místo konání akce
Kitakyushu; Japan
Datum konání akce
26. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—