Improved stampede prediction model on context-awareness framework using machine learning techniques
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50013658" target="_blank" >RIV/62690094:18450/17:50013658 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-319-48517-1_4" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-48517-1_4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-48517-1_4" target="_blank" >10.1007/978-3-319-48517-1_4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improved stampede prediction model on context-awareness framework using machine learning techniques
Popis výsledku v původním jazyce
The determination of stampede occurrence through abnormal behaviors is an important research in context-awareness using individual activity recognition (IAR). An application such as an intelligent smartphone for crowd monitoring using inbuilt sensors is used. Meanwhile, there are few algorithms to recognize abnormal behaviors that can lead to a stampede for mitigation of crowd disasters. This study proposed an improved stampede prediction model which can facilitate abnormal detection with k-means. It can identify cluster areas among a group of people to know susceptible places that can help to predict stampede occurrence using IAR with the help of geographical positioning system (GPS) and accelerometer sensor data. To achieve this, two research questions were formulated and answered in this paper. (i) How to determine crowd of people in an area? (ii) How to know when stampede will occur in the identified area? The experimental results on the proposed model with decision tree (DT) algorithm shows an improved performance of 98.6 %, 97.7 % and 10.9 % over 94.4 %, 95 % and 18 % in the baselines for specificity, accuracy and false-negative rate (FNR) respectively thereby reducing high false negative alarm.
Název v anglickém jazyce
Improved stampede prediction model on context-awareness framework using machine learning techniques
Popis výsledku anglicky
The determination of stampede occurrence through abnormal behaviors is an important research in context-awareness using individual activity recognition (IAR). An application such as an intelligent smartphone for crowd monitoring using inbuilt sensors is used. Meanwhile, there are few algorithms to recognize abnormal behaviors that can lead to a stampede for mitigation of crowd disasters. This study proposed an improved stampede prediction model which can facilitate abnormal detection with k-means. It can identify cluster areas among a group of people to know susceptible places that can help to predict stampede occurrence using IAR with the help of geographical positioning system (GPS) and accelerometer sensor data. To achieve this, two research questions were formulated and answered in this paper. (i) How to determine crowd of people in an area? (ii) How to know when stampede will occur in the identified area? The experimental results on the proposed model with decision tree (DT) algorithm shows an improved performance of 98.6 %, 97.7 % and 10.9 % over 94.4 %, 95 % and 18 % in the baselines for specificity, accuracy and false-negative rate (FNR) respectively thereby reducing high false negative alarm.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in intelligent systems and computing
ISBN
978-3-319-48516-4
ISSN
2194-5357
e-ISSN
neuvedeno
Počet stran výsledku
13
Strana od-do
39-51
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Gadong; Brunei Darussalam
Datum konání akce
18. 11. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000405210000004