Enhanced Approach Using Reduced SBTFD Features and Modified Individual Behavior Estimation for Crowd Condition Prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F19%3A50015728" target="_blank" >RIV/62690094:18450/19:50015728 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1099-4300/21/5/487" target="_blank" >https://www.mdpi.com/1099-4300/21/5/487</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/e21050487" target="_blank" >10.3390/e21050487</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhanced Approach Using Reduced SBTFD Features and Modified Individual Behavior Estimation for Crowd Condition Prediction
Popis výsledku v původním jazyce
Sensor technology provides the real-time monitoring of data in several scenarios that contribute to the improved security of life and property. Crowd condition monitoring is an area that has benefited from this. The basic context-aware framework (BCF) uses activity recognition based on emerging intelligent technology and is among the best that has been proposed for this purpose. However, accuracy is low, and the false negative rate (FNR) remains high. Thus, the need for an enhanced framework that offers reduced FNR and higher accuracy becomes necessary. This article reports our work on the development of an enhanced context-aware framework (EHCAF) using smartphone participatory sensing for crowd monitoring, dimensionality reduction of statistical-based time-frequency domain (SBTFD) features, and enhanced individual behavior estimation (IBEenhcaf). The experimental results achieved 99.1% accuracy and an FNR of 2.8%, showing a clear improvement over the 92.0% accuracy, and an FNR of 31.3% of the BCF.
Název v anglickém jazyce
Enhanced Approach Using Reduced SBTFD Features and Modified Individual Behavior Estimation for Crowd Condition Prediction
Popis výsledku anglicky
Sensor technology provides the real-time monitoring of data in several scenarios that contribute to the improved security of life and property. Crowd condition monitoring is an area that has benefited from this. The basic context-aware framework (BCF) uses activity recognition based on emerging intelligent technology and is among the best that has been proposed for this purpose. However, accuracy is low, and the false negative rate (FNR) remains high. Thus, the need for an enhanced framework that offers reduced FNR and higher accuracy becomes necessary. This article reports our work on the development of an enhanced context-aware framework (EHCAF) using smartphone participatory sensing for crowd monitoring, dimensionality reduction of statistical-based time-frequency domain (SBTFD) features, and enhanced individual behavior estimation (IBEenhcaf). The experimental results achieved 99.1% accuracy and an FNR of 2.8%, showing a clear improvement over the 92.0% accuracy, and an FNR of 31.3% of the BCF.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ENTROPY
ISSN
1099-4300
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
27
Strana od-do
"Article Number: 487"
Kód UT WoS článku
000472675900051
EID výsledku v databázi Scopus
2-s2.0-85066614896