ANN and GMDH Algorithms in QSAR Analyses of Reactivation Potency for Acetylcholinesterase Inhibited by VX Warfare Agent
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50013731" target="_blank" >RIV/62690094:18450/17:50013731 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-319-67077-5_17" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-67077-5_17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-67077-5_17" target="_blank" >10.1007/978-3-319-67077-5_17</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ANN and GMDH Algorithms in QSAR Analyses of Reactivation Potency for Acetylcholinesterase Inhibited by VX Warfare Agent
Popis výsledku v původním jazyce
Successful development of novel drugs requires a close cooperation of experimental subjects, such as chemistry and biology, with theoretical disciplines in order to confidently design new chemical structures eliciting the desired therapeutic effects. Herein, especially quantitative structure-activity relationships (QSAR) as correlation models may elucidate which molecular features are significantly associated with enhancing a specific biological activity. In the present study, QSAR analyses of 30 pyridinium aldoxime reactivators for VX-inhibited rat acetylcholinesterase (AChE) were performed using the group method of data handling (GMDH) approach. The self-organizing polynomial networks based on GMDH were compared with multilayer perceptron networks (MPN) trained by 10 different algorithms. The QSAR models developed by GMHD and MPN were critically evaluated and proposed for further utilization in drug development.
Název v anglickém jazyce
ANN and GMDH Algorithms in QSAR Analyses of Reactivation Potency for Acetylcholinesterase Inhibited by VX Warfare Agent
Popis výsledku anglicky
Successful development of novel drugs requires a close cooperation of experimental subjects, such as chemistry and biology, with theoretical disciplines in order to confidently design new chemical structures eliciting the desired therapeutic effects. Herein, especially quantitative structure-activity relationships (QSAR) as correlation models may elucidate which molecular features are significantly associated with enhancing a specific biological activity. In the present study, QSAR analyses of 30 pyridinium aldoxime reactivators for VX-inhibited rat acetylcholinesterase (AChE) were performed using the group method of data handling (GMDH) approach. The self-organizing polynomial networks based on GMDH were compared with multilayer perceptron networks (MPN) trained by 10 different algorithms. The QSAR models developed by GMHD and MPN were critically evaluated and proposed for further utilization in drug development.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computational Collective Intelligence
ISBN
978-3-319-67076-8
ISSN
0302-9743
e-ISSN
neuvedeno
Počet stran výsledku
11
Strana od-do
171-181
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Nicosia, Cyprus
Datum konání akce
27. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—