Fuzzy K-Means Using Non-Linear S-Distance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F19%3A50015727" target="_blank" >RIV/62690094:18450/19:50015727 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8693780" target="_blank" >https://ieeexplore.ieee.org/document/8693780</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2019.2910195" target="_blank" >10.1109/ACCESS.2019.2910195</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fuzzy K-Means Using Non-Linear S-Distance
Popis výsledku v původním jazyce
A considerable amount of research has been done since long to select an appropriate similarity or dissimilarity measure in cluster analysis for exposing the natural grouping in an input dataset. Still, it is an open problem. In recent years, the research community is focusing on divergence-based non-Euclidean similarity measure in partitional clustering for grouping. In this paper, the Euclidean distance of traditional Fuzzy k-means (FKM) algorithm is replaced by the S-distance, which is derived from the newly introduced S-divergence. Few imperative properties of S-distance and modified FKM are presented in this study. The performance of the proposed FKM is compared with the conventional FKM with Euclidean distance and its variants with the help of several synthetic and real-world datasets. This study focuses on how the proposed clustering algorithm performs on the adopted datasets empirically. The comparative study illustrates that the obtained results are convincing. Moreover, the achieved results denote that the modified FKM outperforms some state-of-the-art FKM algorithms.
Název v anglickém jazyce
Fuzzy K-Means Using Non-Linear S-Distance
Popis výsledku anglicky
A considerable amount of research has been done since long to select an appropriate similarity or dissimilarity measure in cluster analysis for exposing the natural grouping in an input dataset. Still, it is an open problem. In recent years, the research community is focusing on divergence-based non-Euclidean similarity measure in partitional clustering for grouping. In this paper, the Euclidean distance of traditional Fuzzy k-means (FKM) algorithm is replaced by the S-distance, which is derived from the newly introduced S-divergence. Few imperative properties of S-distance and modified FKM are presented in this study. The performance of the proposed FKM is compared with the conventional FKM with Euclidean distance and its variants with the help of several synthetic and real-world datasets. This study focuses on how the proposed clustering algorithm performs on the adopted datasets empirically. The comparative study illustrates that the obtained results are convincing. Moreover, the achieved results denote that the modified FKM outperforms some state-of-the-art FKM algorithms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE ACCESS
ISSN
2169-3536
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
55121-55131
Kód UT WoS článku
000467985000001
EID výsledku v databázi Scopus
2-s2.0-85067021770