Clustering Uncertain Data Objects using Jeffreys-Divergence and Maximum Bipartite Matching based Similarity Measure
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50018117" target="_blank" >RIV/62690094:18450/21:50018117 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9440910" target="_blank" >https://ieeexplore.ieee.org/document/9440910</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2021.3083969" target="_blank" >10.1109/ACCESS.2021.3083969</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Clustering Uncertain Data Objects using Jeffreys-Divergence and Maximum Bipartite Matching based Similarity Measure
Popis výsledku v původním jazyce
In recent years, uncertain data clustering has become the subject of active research in many fields, for example, pattern recognition, and machine learning. Nowadays, researchers have committed themselves to substitute the traditional distance or similarity measures with new metrics in the existing centralized clustering algorithms in order to tackle uncertainty in data. However, in order to perform uncertain data clustering, representation plays an imperative role. In this paper, a Monte-Carlo integration is adopted and modified to express uncertain data in a probabilistic form. Then three similarity measures are used to determine the closeness between two probability distributions including one novel measure. These similarity measures are derived from the notion of Kullback-Leibler divergence and Jeffreys divergence. Finally, density-based spatial clustering of applications with noise and k-medoids algorithms are modified and implemented on one synthetic database and three real-world uncertain databases. The obtained outcomes confirm that the proposed clustering technique defeats some of the existing algorithms. CCBY
Název v anglickém jazyce
Clustering Uncertain Data Objects using Jeffreys-Divergence and Maximum Bipartite Matching based Similarity Measure
Popis výsledku anglicky
In recent years, uncertain data clustering has become the subject of active research in many fields, for example, pattern recognition, and machine learning. Nowadays, researchers have committed themselves to substitute the traditional distance or similarity measures with new metrics in the existing centralized clustering algorithms in order to tackle uncertainty in data. However, in order to perform uncertain data clustering, representation plays an imperative role. In this paper, a Monte-Carlo integration is adopted and modified to express uncertain data in a probabilistic form. Then three similarity measures are used to determine the closeness between two probability distributions including one novel measure. These similarity measures are derived from the notion of Kullback-Leibler divergence and Jeffreys divergence. Finally, density-based spatial clustering of applications with noise and k-medoids algorithms are modified and implemented on one synthetic database and three real-world uncertain databases. The obtained outcomes confirm that the proposed clustering technique defeats some of the existing algorithms. CCBY
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
79505-79519
Kód UT WoS článku
000673853600001
EID výsledku v databázi Scopus
2-s2.0-85107199579