Fuzzy c-means clustering using Jeffreys-divergence based similarity measure
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50017063" target="_blank" >RIV/62690094:18450/20:50017063 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1568494619307987?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1568494619307987?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.asoc.2019.106016" target="_blank" >10.1016/j.asoc.2019.106016</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fuzzy c-means clustering using Jeffreys-divergence based similarity measure
Popis výsledku v původním jazyce
In clustering, similarity measure has been one of the major factors for discovering the natural grouping of a given dataset by identifying hidden patterns. To determine a suitable similarity measure is an open problem in clustering analysis for several years. The purpose of this study is to make known a divergence based similarity measure. The notion of the proposed similarity measure is derived from Jeffrey-divergence. Various features of the proposed similarity measure are explained. Afterwards we develop fuzzy c-means (FCM) by making use of the proposed similarity measure, which guarantees to converge to local minima. The various characteristics of the modified FCM algorithm are also addressed. Some well known real-world and synthetic datasets are considered for the experiments. In addition to that two remote sensing image datasets are also adopted in this work to illustrate the effectiveness of the proposed FCM over some existing methods. All the obtained results demonstrate that FCM with divergence based proposed similarity measure outperforms three latest FCM algorithms. © 2019 Elsevier B.V.
Název v anglickém jazyce
Fuzzy c-means clustering using Jeffreys-divergence based similarity measure
Popis výsledku anglicky
In clustering, similarity measure has been one of the major factors for discovering the natural grouping of a given dataset by identifying hidden patterns. To determine a suitable similarity measure is an open problem in clustering analysis for several years. The purpose of this study is to make known a divergence based similarity measure. The notion of the proposed similarity measure is derived from Jeffrey-divergence. Various features of the proposed similarity measure are explained. Afterwards we develop fuzzy c-means (FCM) by making use of the proposed similarity measure, which guarantees to converge to local minima. The various characteristics of the modified FCM algorithm are also addressed. Some well known real-world and synthetic datasets are considered for the experiments. In addition to that two remote sensing image datasets are also adopted in this work to illustrate the effectiveness of the proposed FCM over some existing methods. All the obtained results demonstrate that FCM with divergence based proposed similarity measure outperforms three latest FCM algorithms. © 2019 Elsevier B.V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF18_069%2F0010054" target="_blank" >EF18_069/0010054: IT4Neuro(degeneration)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Soft Computing Journal
ISSN
1568-4946
e-ISSN
—
Svazek periodika
88
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
"Article Number: 106016"
Kód UT WoS článku
000515094200029
EID výsledku v databázi Scopus
2-s2.0-85076739200