Novel scene recognition using traindetector
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F19%3A50015952" target="_blank" >RIV/62690094:18450/19:50015952 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-13469-3_59" target="_blank" >http://dx.doi.org/10.1007/978-3-030-13469-3_59</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-13469-3_59" target="_blank" >10.1007/978-3-030-13469-3_59</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Novel scene recognition using traindetector
Popis výsledku v původním jazyce
Our ability to process the image keeps improving day by day, since the introduction of deep learning. Lastly, this contributed to the advance of object recognition through a Convolutional neural network and Place recognition, which is our concern in this paper. Through this research, it was observed a complexity in the extraction of the correct and relevant features for scene recognition. To address this issue, we extracted at the pixel level several subareas which contain more color intensity than other parts, and we went through each image once to build the feature representation of it. We also noticed that several available models based on Convolution Neural Network requires a Graphics Processing Units (GPU) for their implementation and are difficult to train. We propose in this paper, a novel Scene Recognition method using Single-Shot-Detector (SSD), Multi-modal Local-Receptive-Field (MM-LRF) and Extreme-Learning-Machine (ELM) that we named TrainDetector. It outperforms the state-of-the-art techniques when we apply it to three well-known scene recognition Datasets.
Název v anglickém jazyce
Novel scene recognition using traindetector
Popis výsledku anglicky
Our ability to process the image keeps improving day by day, since the introduction of deep learning. Lastly, this contributed to the advance of object recognition through a Convolutional neural network and Place recognition, which is our concern in this paper. Through this research, it was observed a complexity in the extraction of the correct and relevant features for scene recognition. To address this issue, we extracted at the pixel level several subareas which contain more color intensity than other parts, and we went through each image once to build the feature representation of it. We also noticed that several available models based on Convolution Neural Network requires a Graphics Processing Units (GPU) for their implementation and are difficult to train. We propose in this paper, a novel Scene Recognition method using Single-Shot-Detector (SSD), Multi-modal Local-Receptive-Field (MM-LRF) and Extreme-Learning-Machine (ELM) that we named TrainDetector. It outperforms the state-of-the-art techniques when we apply it to three well-known scene recognition Datasets.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-030-13468-6
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
9
Strana od-do
504-512
Název nakladatele
Springer Verlag
Místo vydání
Berlin
Místo konání akce
Madrid
Datum konání akce
19. 11. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—