Sentiment Analysis of National Tourism Organizations on Social Media
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50016698" target="_blank" >RIV/62690094:18450/20:50016698 - isvavai.cz</a>
Výsledek na webu
<a href="http://eldok.svkhk.cz/out/Hradec_Economic_Days/Hradec_Economic_Days_2020/Hradec_Economic_Days_2020.pdf" target="_blank" >http://eldok.svkhk.cz/out/Hradec_Economic_Days/Hradec_Economic_Days_2020/Hradec_Economic_Days_2020.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sentiment Analysis of National Tourism Organizations on Social Media
Popis výsledku v původním jazyce
Social media is probably currently the largest source of human-generated text content. User opinions, feedback, comments, and criticism points to their mood and sentiment towards different topics, especially destinations, products or services. The rapid rise in amount of data and constantly generated content require the need to automate both data acquisition and processing to identify important information and knowledge. Sentiment analysis provides the opportunity to detect opinion, feeling and sentiment from unstructured texts on social media. To analyze the sentiment Machine Learning with Google Natural Language API Client Libraries and Google Cloud SDK (Software development kit) was used. NTOs (National Tourism Organizations) social media have been chosen for analysis in which emotional messages can be expected to stimulate potential visitors to the destination. It was found that all selected NTOs add mostly positive posts and in the sample of two hundred contributions there are only seven with negative polarity of sentiment. There was a moderate correlation between customer growth and positive polarity in the contribution. The results show that creating stable positive descriptions for posts can be one of the key variables for the growth of the fan base and stimulation of potential visitors.
Název v anglickém jazyce
Sentiment Analysis of National Tourism Organizations on Social Media
Popis výsledku anglicky
Social media is probably currently the largest source of human-generated text content. User opinions, feedback, comments, and criticism points to their mood and sentiment towards different topics, especially destinations, products or services. The rapid rise in amount of data and constantly generated content require the need to automate both data acquisition and processing to identify important information and knowledge. Sentiment analysis provides the opportunity to detect opinion, feeling and sentiment from unstructured texts on social media. To analyze the sentiment Machine Learning with Google Natural Language API Client Libraries and Google Cloud SDK (Software development kit) was used. NTOs (National Tourism Organizations) social media have been chosen for analysis in which emotional messages can be expected to stimulate potential visitors to the destination. It was found that all selected NTOs add mostly positive posts and in the sample of two hundred contributions there are only seven with negative polarity of sentiment. There was a moderate correlation between customer growth and positive polarity in the contribution. The results show that creating stable positive descriptions for posts can be one of the key variables for the growth of the fan base and stimulation of potential visitors.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50204 - Business and management
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Hradec Economic Days
ISBN
978-80-7435-776-3
ISSN
2464-6059
e-ISSN
2464-6067
Počet stran výsledku
7
Strana od-do
250-256
Název nakladatele
Univerzita Hradec Králové
Místo vydání
Hradec Králové
Místo konání akce
Hradec Králové
Datum konání akce
2. 4. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000568108700027