Possibilities of Using Kalman Filters in Indoor Localization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50017047" target="_blank" >RIV/62690094:18450/20:50017047 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/8/9/1564" target="_blank" >https://www.mdpi.com/2227-7390/8/9/1564</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math8091564" target="_blank" >10.3390/math8091564</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Possibilities of Using Kalman Filters in Indoor Localization
Popis výsledku v původním jazyce
Kalman filters are a set of algorithms based on the idea of a filter described by Rudolf Emil Kalman in 1960. Kalman filters are used in various application domains, including localization, object tracking, and navigation. The text provides an overview and discussion of the possibilities of using Kalman filters in indoor localization. The problems of static localization and localization of dynamically moving objects are investigated, and corresponding stochastic models are created. Three algorithms for static localization and one algorithm for dynamic localization are described and demonstrated. All algorithms are implemented in the MATLAB software, and then their performance is tested on Bluetooth Low Energy data from a real indoor environment. The results show that by using Kalman filters, the mean localization error of two meters can be achieved, which is one meter less than in the case of using the standard fingerprinting technique. In general, the presented principles of Kalman filters are applicable in connection with various technologies and data of various nature.
Název v anglickém jazyce
Possibilities of Using Kalman Filters in Indoor Localization
Popis výsledku anglicky
Kalman filters are a set of algorithms based on the idea of a filter described by Rudolf Emil Kalman in 1960. Kalman filters are used in various application domains, including localization, object tracking, and navigation. The text provides an overview and discussion of the possibilities of using Kalman filters in indoor localization. The problems of static localization and localization of dynamically moving objects are investigated, and corresponding stochastic models are created. Three algorithms for static localization and one algorithm for dynamic localization are described and demonstrated. All algorithms are implemented in the MATLAB software, and then their performance is tested on Bluetooth Low Energy data from a real indoor environment. The results show that by using Kalman filters, the mean localization error of two meters can be achieved, which is one meter less than in the case of using the standard fingerprinting technique. In general, the presented principles of Kalman filters are applicable in connection with various technologies and data of various nature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
17
Strana od-do
"Article Number: 1564"
Kód UT WoS článku
000580907500001
EID výsledku v databázi Scopus
2-s2.0-85091500507