Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Phish webpage classification using hybrid algorithm of machine learning and statistical induction ratios

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50017132" target="_blank" >RIV/62690094:18450/20:50017132 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.inderscience.com/offer.php?id=108727" target="_blank" >http://www.inderscience.com/offer.php?id=108727</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1504/IJDMMM.2020.108727" target="_blank" >10.1504/IJDMMM.2020.108727</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Phish webpage classification using hybrid algorithm of machine learning and statistical induction ratios

  • Popis výsledku v původním jazyce

    Although the conventional machine learning-based anti-phishing techniques outperform their competitors in phishing detection, they are still targeted by zero-hour phish webpages due to their constraints of phishing induction. Therefore, phishing induction must be boosted up with the extraction of new features, the selection of robust subsets of decisive features, the active learning of classifiers on a big webpage stream. In this paper, we propose a hybrid feature-based classification algorithm (HFBC) for decisive phish webpage classification. HFBC hybridises two statistical criteria optimised feature occurrence (OFC) and phishing induction ratio (PIR) with the induction settings of the most salient machine learning algorithms, Naive bays and decision tree. Additionally, we propose two constituent algorithms of features extraction and features selection for holistic phish webpage characterisation. The superiority of our proposed approach is justified and proven throughout chronological, real-time, and comparative analyses against existing machines learning-based anti-phishing techniques.

  • Název v anglickém jazyce

    Phish webpage classification using hybrid algorithm of machine learning and statistical induction ratios

  • Popis výsledku anglicky

    Although the conventional machine learning-based anti-phishing techniques outperform their competitors in phishing detection, they are still targeted by zero-hour phish webpages due to their constraints of phishing induction. Therefore, phishing induction must be boosted up with the extraction of new features, the selection of robust subsets of decisive features, the active learning of classifiers on a big webpage stream. In this paper, we propose a hybrid feature-based classification algorithm (HFBC) for decisive phish webpage classification. HFBC hybridises two statistical criteria optimised feature occurrence (OFC) and phishing induction ratio (PIR) with the induction settings of the most salient machine learning algorithms, Naive bays and decision tree. Additionally, we propose two constituent algorithms of features extraction and features selection for holistic phish webpage characterisation. The superiority of our proposed approach is justified and proven throughout chronological, real-time, and comparative analyses against existing machines learning-based anti-phishing techniques.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT

  • ISSN

    1759-1163

  • e-ISSN

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    22

  • Strana od-do

    255-276

  • Kód UT WoS článku

    000556833300001

  • EID výsledku v databázi Scopus

    2-s2.0-85084789086