Phish webpage classification using hybrid algorithm of machine learning and statistical induction ratios
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50017132" target="_blank" >RIV/62690094:18450/20:50017132 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.inderscience.com/offer.php?id=108727" target="_blank" >http://www.inderscience.com/offer.php?id=108727</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1504/IJDMMM.2020.108727" target="_blank" >10.1504/IJDMMM.2020.108727</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Phish webpage classification using hybrid algorithm of machine learning and statistical induction ratios
Popis výsledku v původním jazyce
Although the conventional machine learning-based anti-phishing techniques outperform their competitors in phishing detection, they are still targeted by zero-hour phish webpages due to their constraints of phishing induction. Therefore, phishing induction must be boosted up with the extraction of new features, the selection of robust subsets of decisive features, the active learning of classifiers on a big webpage stream. In this paper, we propose a hybrid feature-based classification algorithm (HFBC) for decisive phish webpage classification. HFBC hybridises two statistical criteria optimised feature occurrence (OFC) and phishing induction ratio (PIR) with the induction settings of the most salient machine learning algorithms, Naive bays and decision tree. Additionally, we propose two constituent algorithms of features extraction and features selection for holistic phish webpage characterisation. The superiority of our proposed approach is justified and proven throughout chronological, real-time, and comparative analyses against existing machines learning-based anti-phishing techniques.
Název v anglickém jazyce
Phish webpage classification using hybrid algorithm of machine learning and statistical induction ratios
Popis výsledku anglicky
Although the conventional machine learning-based anti-phishing techniques outperform their competitors in phishing detection, they are still targeted by zero-hour phish webpages due to their constraints of phishing induction. Therefore, phishing induction must be boosted up with the extraction of new features, the selection of robust subsets of decisive features, the active learning of classifiers on a big webpage stream. In this paper, we propose a hybrid feature-based classification algorithm (HFBC) for decisive phish webpage classification. HFBC hybridises two statistical criteria optimised feature occurrence (OFC) and phishing induction ratio (PIR) with the induction settings of the most salient machine learning algorithms, Naive bays and decision tree. Additionally, we propose two constituent algorithms of features extraction and features selection for holistic phish webpage characterisation. The superiority of our proposed approach is justified and proven throughout chronological, real-time, and comparative analyses against existing machines learning-based anti-phishing techniques.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT
ISSN
1759-1163
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
22
Strana od-do
255-276
Kód UT WoS článku
000556833300001
EID výsledku v databázi Scopus
2-s2.0-85084789086