Social Recommendation for Social Networks Using Deep Learning Approach: A Systematic Review
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50018451" target="_blank" >RIV/62690094:18450/21:50018451 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-88113-9_2" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-88113-9_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-88113-9_2" target="_blank" >10.1007/978-3-030-88113-9_2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Social Recommendation for Social Networks Using Deep Learning Approach: A Systematic Review
Popis výsledku v původním jazyce
The increasing popularity of social networks indicates that the vast amounts of data contained within them could be useful in various implementations, including recommendation systems. Interests and research publications on deep learning-based recommendation systems have largely increased. This study aimed to identify, summarize, and assess studies related to the application of deep learning-based recommendation systems on social media platforms to provide a systematic review of recent studies and provide a way for further research to improve the development of deep learning-based recommendation systems in social environments. A total of 32 papers were selected from previous studies in five of the major digital libraries, including Springer, IEEE, ScienceDirect, ACM, Scopus, and Web of Science, published between 2016 and 2020. Results revealed that even though RS has received high coverage in recent years, several obstacles and opportunities will shape the future of RS for researchers. In addition, social recommendation systems achieving high accuracy can be built by using a combination of techniques that incorporate a range of features in SRS. Therefore, the adoption of deep learning techniques in developing social recommendation systems is undiscovered. © 2021, Springer Nature Switzerland AG.
Název v anglickém jazyce
Social Recommendation for Social Networks Using Deep Learning Approach: A Systematic Review
Popis výsledku anglicky
The increasing popularity of social networks indicates that the vast amounts of data contained within them could be useful in various implementations, including recommendation systems. Interests and research publications on deep learning-based recommendation systems have largely increased. This study aimed to identify, summarize, and assess studies related to the application of deep learning-based recommendation systems on social media platforms to provide a systematic review of recent studies and provide a way for further research to improve the development of deep learning-based recommendation systems in social environments. A total of 32 papers were selected from previous studies in five of the major digital libraries, including Springer, IEEE, ScienceDirect, ACM, Scopus, and Web of Science, published between 2016 and 2020. Results revealed that even though RS has received high coverage in recent years, several obstacles and opportunities will shape the future of RS for researchers. In addition, social recommendation systems achieving high accuracy can be built by using a combination of techniques that incorporate a range of features in SRS. Therefore, the adoption of deep learning techniques in developing social recommendation systems is undiscovered. © 2021, Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Communications in Computer and Information Science
ISBN
978-3-030-88112-2
ISSN
1865-0929
e-ISSN
—
Počet stran výsledku
15
Strana od-do
15-29
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Cham
Místo konání akce
On-line
Datum konání akce
29. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—