Social Recommendation for Social Networks Using Deep Learning Approach: A Systematic Review, Taxonomy, Issues, and Future Directions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020517" target="_blank" >RIV/62690094:18450/23:50020517 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10128133" target="_blank" >https://ieeexplore.ieee.org/document/10128133</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2023.3276988" target="_blank" >10.1109/ACCESS.2023.3276988</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Social Recommendation for Social Networks Using Deep Learning Approach: A Systematic Review, Taxonomy, Issues, and Future Directions
Popis výsledku v původním jazyce
Due to the rise of social media, a vast volume of information is shared daily. Finding relevant and acceptable information has become more challenging as the Internet's information flow has changed and more options have been available. Various recommendation systems have been proposed and successfully used for different applications. This paper presents a taxonomy of deep learning algorithms for social recommendation by examining selected papers using a systematic literature review approach. Forty-six publications were chosen from research published between 2016 and 2022 in six major online libraries. The main purpose of this research is to provide a brief review of published studies to assist future researchers in establishing new strategies in this field. The implantation of deep learning in recommender systems proved to be very effective and achieved competitive performance. Different methods and domains have been summarized to find the most appropriate method and domain.
Název v anglickém jazyce
Social Recommendation for Social Networks Using Deep Learning Approach: A Systematic Review, Taxonomy, Issues, and Future Directions
Popis výsledku anglicky
Due to the rise of social media, a vast volume of information is shared daily. Finding relevant and acceptable information has become more challenging as the Internet's information flow has changed and more options have been available. Various recommendation systems have been proposed and successfully used for different applications. This paper presents a taxonomy of deep learning algorithms for social recommendation by examining selected papers using a systematic literature review approach. Forty-six publications were chosen from research published between 2016 and 2022 in six major online libraries. The main purpose of this research is to provide a brief review of published studies to assist future researchers in establishing new strategies in this field. The implantation of deep learning in recommender systems proved to be very effective and achieved competitive performance. Different methods and domains have been summarized to find the most appropriate method and domain.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
63874-63894
Kód UT WoS článku
001021953000001
EID výsledku v databázi Scopus
2-s2.0-85160248301