Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

SUSTAINABLE RESILIENT SUPPLIER SELECTION FOR IOT IMPLEMENTATION BASED ON THE INTEGRATED BWM AND TRUST UNDER SPHERICAL FUZZY SETS

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020787" target="_blank" >RIV/62690094:18450/23:50020787 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://dmame-journal.org/index.php/dmame/article/view/584" target="_blank" >https://dmame-journal.org/index.php/dmame/article/view/584</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.31181/dmame12012023b" target="_blank" >10.31181/dmame12012023b</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    SUSTAINABLE RESILIENT SUPPLIER SELECTION FOR IOT IMPLEMENTATION BASED ON THE INTEGRATED BWM AND TRUST UNDER SPHERICAL FUZZY SETS

  • Popis výsledku v původním jazyce

    Supplier selection process plays a vital role in supply chain management and is the most important variable in its success. With increasing environmental considerations, organizations must consider sustainability considerations and economic goals to protect the environment. Furthermore, the destructive effects of disruptions on the supply chain performance of companies have prompted organizational experts to pay special attention to the concept of resilience. This study developed an integrated approach based on the extended version of Multi-Criteria Decision-Making (MCDM) methods in a spherical fuzzy (SFS) environment to address sustainable and resilient IoT supplier selection. In the proposed approach, the main criteria (i.e., resilience, and sustainability) have been used in the supplier selection process. Then, these criteria are weighted using the developed SFS-Best-Worst Method (BWM), which reduces uncertainty in pairwise comparisons. In the next step, the 14 selected IoT suppliers are evaluated and prioritized by applying SFS-mulTi-noRmalization mUltiDistance aSsessmenT (TRUST) that considers a multi-normalization algorithm to reduce subjectivity in normalized data. The results of this study shows that the pollution control and risk-taking sub-criteria are placed in the first and second priorities, respectively. The comparison of the results of the SFS-TRUST with other MCDM methods and sensitivity analysis demonstrates the performance of the proposed approach and its ranking stability in various scenarios. © 2023 by the authors.

  • Název v anglickém jazyce

    SUSTAINABLE RESILIENT SUPPLIER SELECTION FOR IOT IMPLEMENTATION BASED ON THE INTEGRATED BWM AND TRUST UNDER SPHERICAL FUZZY SETS

  • Popis výsledku anglicky

    Supplier selection process plays a vital role in supply chain management and is the most important variable in its success. With increasing environmental considerations, organizations must consider sustainability considerations and economic goals to protect the environment. Furthermore, the destructive effects of disruptions on the supply chain performance of companies have prompted organizational experts to pay special attention to the concept of resilience. This study developed an integrated approach based on the extended version of Multi-Criteria Decision-Making (MCDM) methods in a spherical fuzzy (SFS) environment to address sustainable and resilient IoT supplier selection. In the proposed approach, the main criteria (i.e., resilience, and sustainability) have been used in the supplier selection process. Then, these criteria are weighted using the developed SFS-Best-Worst Method (BWM), which reduces uncertainty in pairwise comparisons. In the next step, the 14 selected IoT suppliers are evaluated and prioritized by applying SFS-mulTi-noRmalization mUltiDistance aSsessmenT (TRUST) that considers a multi-normalization algorithm to reduce subjectivity in normalized data. The results of this study shows that the pollution control and risk-taking sub-criteria are placed in the first and second priorities, respectively. The comparison of the results of the SFS-TRUST with other MCDM methods and sensitivity analysis demonstrates the performance of the proposed approach and its ranking stability in various scenarios. © 2023 by the authors.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Decision Making: Applications in Management and Engineering

  • ISSN

    2560-6018

  • e-ISSN

    2620-0104

  • Svazek periodika

    6

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    RS - Srbská republika

  • Počet stran výsledku

    33

  • Strana od-do

    153-185

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85159366943