SUSTAINABLE RESILIENT SUPPLIER SELECTION FOR IOT IMPLEMENTATION BASED ON THE INTEGRATED BWM AND TRUST UNDER SPHERICAL FUZZY SETS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020787" target="_blank" >RIV/62690094:18450/23:50020787 - isvavai.cz</a>
Výsledek na webu
<a href="https://dmame-journal.org/index.php/dmame/article/view/584" target="_blank" >https://dmame-journal.org/index.php/dmame/article/view/584</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.31181/dmame12012023b" target="_blank" >10.31181/dmame12012023b</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SUSTAINABLE RESILIENT SUPPLIER SELECTION FOR IOT IMPLEMENTATION BASED ON THE INTEGRATED BWM AND TRUST UNDER SPHERICAL FUZZY SETS
Popis výsledku v původním jazyce
Supplier selection process plays a vital role in supply chain management and is the most important variable in its success. With increasing environmental considerations, organizations must consider sustainability considerations and economic goals to protect the environment. Furthermore, the destructive effects of disruptions on the supply chain performance of companies have prompted organizational experts to pay special attention to the concept of resilience. This study developed an integrated approach based on the extended version of Multi-Criteria Decision-Making (MCDM) methods in a spherical fuzzy (SFS) environment to address sustainable and resilient IoT supplier selection. In the proposed approach, the main criteria (i.e., resilience, and sustainability) have been used in the supplier selection process. Then, these criteria are weighted using the developed SFS-Best-Worst Method (BWM), which reduces uncertainty in pairwise comparisons. In the next step, the 14 selected IoT suppliers are evaluated and prioritized by applying SFS-mulTi-noRmalization mUltiDistance aSsessmenT (TRUST) that considers a multi-normalization algorithm to reduce subjectivity in normalized data. The results of this study shows that the pollution control and risk-taking sub-criteria are placed in the first and second priorities, respectively. The comparison of the results of the SFS-TRUST with other MCDM methods and sensitivity analysis demonstrates the performance of the proposed approach and its ranking stability in various scenarios. © 2023 by the authors.
Název v anglickém jazyce
SUSTAINABLE RESILIENT SUPPLIER SELECTION FOR IOT IMPLEMENTATION BASED ON THE INTEGRATED BWM AND TRUST UNDER SPHERICAL FUZZY SETS
Popis výsledku anglicky
Supplier selection process plays a vital role in supply chain management and is the most important variable in its success. With increasing environmental considerations, organizations must consider sustainability considerations and economic goals to protect the environment. Furthermore, the destructive effects of disruptions on the supply chain performance of companies have prompted organizational experts to pay special attention to the concept of resilience. This study developed an integrated approach based on the extended version of Multi-Criteria Decision-Making (MCDM) methods in a spherical fuzzy (SFS) environment to address sustainable and resilient IoT supplier selection. In the proposed approach, the main criteria (i.e., resilience, and sustainability) have been used in the supplier selection process. Then, these criteria are weighted using the developed SFS-Best-Worst Method (BWM), which reduces uncertainty in pairwise comparisons. In the next step, the 14 selected IoT suppliers are evaluated and prioritized by applying SFS-mulTi-noRmalization mUltiDistance aSsessmenT (TRUST) that considers a multi-normalization algorithm to reduce subjectivity in normalized data. The results of this study shows that the pollution control and risk-taking sub-criteria are placed in the first and second priorities, respectively. The comparison of the results of the SFS-TRUST with other MCDM methods and sensitivity analysis demonstrates the performance of the proposed approach and its ranking stability in various scenarios. © 2023 by the authors.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Decision Making: Applications in Management and Engineering
ISSN
2560-6018
e-ISSN
2620-0104
Svazek periodika
6
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
RS - Srbská republika
Počet stran výsledku
33
Strana od-do
153-185
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85159366943