Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Anticipating Student Engagement in Classroom through IoT-Enabled Intelligent Teaching Model Enhanced by Machine Learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020865" target="_blank" >RIV/62690094:18450/23:50020865 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.americaspg.com/articleinfo/3/show/2098" target="_blank" >https://www.americaspg.com/articleinfo/3/show/2098</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.54216/FPA.130115" target="_blank" >10.54216/FPA.130115</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Anticipating Student Engagement in Classroom through IoT-Enabled Intelligent Teaching Model Enhanced by Machine Learning

  • Popis výsledku v původním jazyce

    Machine learning provides several advantages for the usage of physical teaching technology. Machine learning is one of the major paths with connected technology and is part of a powerful frontier discipline that develops and influences overall education growth. To enhance student connection and assess student involvement in physical education, the Machine Learning assisted Computerized Physical Teaching Model (MLCPTM) has been developed in this work. The proposed MLCPTM intends to investigate and address contemporary technical physical education to create the ideal theoretical foundation for the growth of technology and current physical activity. Virtual reality (VR) technologies are used in the proposed MLCPTM to create a system for correcting physical education activity. The theory and category of machine learning were covered in this essay, along with a thorough analysis and examination of modern technological advancements in physical education. The challenges with machine learning in contemporary sports instructional technologies are also explained. Then, athletes should accelerate their knowledge of the movement techniques and heighten the training effect. According to the results of the experiments, the suggested MLCPTM model outperforms other existing models in terms of an effective learning ratio of 82.5 per cent, feedback ratio of 96 per cent, response ratio of 98.6 per cent, decision-making ratio of 96.3 per cent, and movement detection ratio of 79.84 per cent, the precision ratio of 97.8 per cent. © 2023, American Scientific Publishing Group (ASPG). All rights reserved.

  • Název v anglickém jazyce

    Anticipating Student Engagement in Classroom through IoT-Enabled Intelligent Teaching Model Enhanced by Machine Learning

  • Popis výsledku anglicky

    Machine learning provides several advantages for the usage of physical teaching technology. Machine learning is one of the major paths with connected technology and is part of a powerful frontier discipline that develops and influences overall education growth. To enhance student connection and assess student involvement in physical education, the Machine Learning assisted Computerized Physical Teaching Model (MLCPTM) has been developed in this work. The proposed MLCPTM intends to investigate and address contemporary technical physical education to create the ideal theoretical foundation for the growth of technology and current physical activity. Virtual reality (VR) technologies are used in the proposed MLCPTM to create a system for correcting physical education activity. The theory and category of machine learning were covered in this essay, along with a thorough analysis and examination of modern technological advancements in physical education. The challenges with machine learning in contemporary sports instructional technologies are also explained. Then, athletes should accelerate their knowledge of the movement techniques and heighten the training effect. According to the results of the experiments, the suggested MLCPTM model outperforms other existing models in terms of an effective learning ratio of 82.5 per cent, feedback ratio of 96 per cent, response ratio of 98.6 per cent, decision-making ratio of 96.3 per cent, and movement detection ratio of 79.84 per cent, the precision ratio of 97.8 per cent. © 2023, American Scientific Publishing Group (ASPG). All rights reserved.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Fusion: Practice and Applications

  • ISSN

    2770-0070

  • e-ISSN

    2692-4048

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    189-202

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85177455844