Anticipating Student Engagement in Classroom through IoT-Enabled Intelligent Teaching Model Enhanced by Machine Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020865" target="_blank" >RIV/62690094:18450/23:50020865 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.americaspg.com/articleinfo/3/show/2098" target="_blank" >https://www.americaspg.com/articleinfo/3/show/2098</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.54216/FPA.130115" target="_blank" >10.54216/FPA.130115</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Anticipating Student Engagement in Classroom through IoT-Enabled Intelligent Teaching Model Enhanced by Machine Learning
Popis výsledku v původním jazyce
Machine learning provides several advantages for the usage of physical teaching technology. Machine learning is one of the major paths with connected technology and is part of a powerful frontier discipline that develops and influences overall education growth. To enhance student connection and assess student involvement in physical education, the Machine Learning assisted Computerized Physical Teaching Model (MLCPTM) has been developed in this work. The proposed MLCPTM intends to investigate and address contemporary technical physical education to create the ideal theoretical foundation for the growth of technology and current physical activity. Virtual reality (VR) technologies are used in the proposed MLCPTM to create a system for correcting physical education activity. The theory and category of machine learning were covered in this essay, along with a thorough analysis and examination of modern technological advancements in physical education. The challenges with machine learning in contemporary sports instructional technologies are also explained. Then, athletes should accelerate their knowledge of the movement techniques and heighten the training effect. According to the results of the experiments, the suggested MLCPTM model outperforms other existing models in terms of an effective learning ratio of 82.5 per cent, feedback ratio of 96 per cent, response ratio of 98.6 per cent, decision-making ratio of 96.3 per cent, and movement detection ratio of 79.84 per cent, the precision ratio of 97.8 per cent. © 2023, American Scientific Publishing Group (ASPG). All rights reserved.
Název v anglickém jazyce
Anticipating Student Engagement in Classroom through IoT-Enabled Intelligent Teaching Model Enhanced by Machine Learning
Popis výsledku anglicky
Machine learning provides several advantages for the usage of physical teaching technology. Machine learning is one of the major paths with connected technology and is part of a powerful frontier discipline that develops and influences overall education growth. To enhance student connection and assess student involvement in physical education, the Machine Learning assisted Computerized Physical Teaching Model (MLCPTM) has been developed in this work. The proposed MLCPTM intends to investigate and address contemporary technical physical education to create the ideal theoretical foundation for the growth of technology and current physical activity. Virtual reality (VR) technologies are used in the proposed MLCPTM to create a system for correcting physical education activity. The theory and category of machine learning were covered in this essay, along with a thorough analysis and examination of modern technological advancements in physical education. The challenges with machine learning in contemporary sports instructional technologies are also explained. Then, athletes should accelerate their knowledge of the movement techniques and heighten the training effect. According to the results of the experiments, the suggested MLCPTM model outperforms other existing models in terms of an effective learning ratio of 82.5 per cent, feedback ratio of 96 per cent, response ratio of 98.6 per cent, decision-making ratio of 96.3 per cent, and movement detection ratio of 79.84 per cent, the precision ratio of 97.8 per cent. © 2023, American Scientific Publishing Group (ASPG). All rights reserved.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fusion: Practice and Applications
ISSN
2770-0070
e-ISSN
2692-4048
Svazek periodika
13
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
189-202
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85177455844