Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

S-Divergence-Based Internal Clustering Validation Index

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020881" target="_blank" >RIV/62690094:18450/23:50020881 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.ijimai.org/journal/sites/default/files/2023-11/ijimai8_4_12.pdf" target="_blank" >https://www.ijimai.org/journal/sites/default/files/2023-11/ijimai8_4_12.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.9781/ijimai.2023.10.001" target="_blank" >10.9781/ijimai.2023.10.001</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    S-Divergence-Based Internal Clustering Validation Index

  • Popis výsledku v původním jazyce

    A clustering validation index (CVI) is employed to evaluate an algorithm’s clustering results. Generally, CVI statistics can be split into three classes, namely internal, external, and relative cluster validations. Most of the existing internal CVIs were designed based on compactness (CM) and separation (SM). The distance between cluster centers is calculated by SM, whereas the CM measures the variance of the cluster. However, the SM between groups is not always captured accurately in highly overlapping classes. In this article, we devise a novel internal CVI that can be regarded as a complementary measure to the landscape of available internaCVIs. Initially, a database’s clusters are modeled as a non-parametric density function estimated using kernedensity estimation. Then the S-divergence (SD) and S-distance are introduced for measuring the SM and the CM, respectively. The SD is defined based on the concept of Hermitian positive definite matrices applied to density functions. The proposed internal CVI (PM) is the ratio of CM to SM. The PM outperforms the legacy measures presented in the literature on both superficial and realistic databases in various scenarios, according to empirical results from four popular clustering algorithms, including fuzzy k-means, spectral clusteringdensity peak clustering, and density-based spatial clustering applied to noisy data. © 2023, Universidad Internacional de la Rioja. All rights reserved.

  • Název v anglickém jazyce

    S-Divergence-Based Internal Clustering Validation Index

  • Popis výsledku anglicky

    A clustering validation index (CVI) is employed to evaluate an algorithm’s clustering results. Generally, CVI statistics can be split into three classes, namely internal, external, and relative cluster validations. Most of the existing internal CVIs were designed based on compactness (CM) and separation (SM). The distance between cluster centers is calculated by SM, whereas the CM measures the variance of the cluster. However, the SM between groups is not always captured accurately in highly overlapping classes. In this article, we devise a novel internal CVI that can be regarded as a complementary measure to the landscape of available internaCVIs. Initially, a database’s clusters are modeled as a non-parametric density function estimated using kernedensity estimation. Then the S-divergence (SD) and S-distance are introduced for measuring the SM and the CM, respectively. The SD is defined based on the concept of Hermitian positive definite matrices applied to density functions. The proposed internal CVI (PM) is the ratio of CM to SM. The PM outperforms the legacy measures presented in the literature on both superficial and realistic databases in various scenarios, according to empirical results from four popular clustering algorithms, including fuzzy k-means, spectral clusteringdensity peak clustering, and density-based spatial clustering applied to noisy data. © 2023, Universidad Internacional de la Rioja. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Interactive Multimedia and Artificial Intelligence

  • ISSN

    1989-1660

  • e-ISSN

    1989-1660

  • Svazek periodika

    8

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    ES - Španělské království

  • Počet stran výsledku

    13

  • Strana od-do

    127-139

  • Kód UT WoS článku

    001130481400007

  • EID výsledku v databázi Scopus

    2-s2.0-85178408829