Outlier Detection Performance of a Modified Z-Score Method in Time-Series RSS Observation With Hybrid Scale Estimators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021299" target="_blank" >RIV/62690094:18450/24:50021299 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10410855" target="_blank" >https://ieeexplore.ieee.org/document/10410855</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2024.3356731" target="_blank" >10.1109/ACCESS.2024.3356731</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Outlier Detection Performance of a Modified Z-Score Method in Time-Series RSS Observation With Hybrid Scale Estimators
Popis výsledku v původním jazyce
The modified Z-score (mZ-score) method has been used to detect outliers in time series received signal strength (RSS) observations. Its performance is dependent on the scale estimator used, and each has advantages and disadvantages over the others. One approach to developing a scale estimator that combines the advantages of two or more scale estimators is through scale estimator hybridization. In this paper, the outlier detection performance of a mZ-score method with different hybridization approaches for Sn and median absolute deviation (MAD) scale estimators is determined and analysed. Three different hybrid scale estimators are identified, namely weighted, maximum, and average hybrid scale estimators. The performance of the mZ-score method using the three different hybrid scale estimators is determined using three experimentally generated and publicly available time-series RSS datasets. Based on the simulation results, the weighted hybrid scale estimator results in the best outlier detection performance amongst the three hybrid scale estimators. When compared to the mean-shift-based outlier detection (MOD) technique, the k-means clustering-based technique, and the density-based spatial clustering (DBSCAN) technique, the mZ-score method with the weighted hybrid scale estimator performs better with little or no false alarm and false negative detections.
Název v anglickém jazyce
Outlier Detection Performance of a Modified Z-Score Method in Time-Series RSS Observation With Hybrid Scale Estimators
Popis výsledku anglicky
The modified Z-score (mZ-score) method has been used to detect outliers in time series received signal strength (RSS) observations. Its performance is dependent on the scale estimator used, and each has advantages and disadvantages over the others. One approach to developing a scale estimator that combines the advantages of two or more scale estimators is through scale estimator hybridization. In this paper, the outlier detection performance of a mZ-score method with different hybridization approaches for Sn and median absolute deviation (MAD) scale estimators is determined and analysed. Three different hybrid scale estimators are identified, namely weighted, maximum, and average hybrid scale estimators. The performance of the mZ-score method using the three different hybrid scale estimators is determined using three experimentally generated and publicly available time-series RSS datasets. Based on the simulation results, the weighted hybrid scale estimator results in the best outlier detection performance amongst the three hybrid scale estimators. When compared to the mean-shift-based outlier detection (MOD) technique, the k-means clustering-based technique, and the density-based spatial clustering (DBSCAN) technique, the mZ-score method with the weighted hybrid scale estimator performs better with little or no false alarm and false negative detections.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
12
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
12785-12796
Kód UT WoS článku
001151653100001
EID výsledku v databázi Scopus
2-s2.0-85183764731