Fog-Based Ransomware Detection for Internet of Medical Things Using Lighweight Machine Learning Algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021582" target="_blank" >RIV/62690094:18450/24:50021582 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-981-97-4677-4_17" target="_blank" >http://dx.doi.org/10.1007/978-981-97-4677-4_17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-97-4677-4_17" target="_blank" >10.1007/978-981-97-4677-4_17</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fog-Based Ransomware Detection for Internet of Medical Things Using Lighweight Machine Learning Algorithms
Popis výsledku v původním jazyce
Instances of severe cyber threats such as aggressive attacks,malware, and ransomware have been causing significant harm to computer systems, servers, and various applications across diverse industriesand enterprises. These security issues are of paramount importance andrequire immediate attention. To address these concerns, it is crucial todetect and classify ransomware effectively for prompt response and prevention. This research employs deep learning algorithms to achieve thisgoal by applying three methods which are DNN, LSTM and Bi-LSTM.The approach involves analyzing the behavior patterns of ransomwareand identifying distinctive features that can differentiate between various types of ransomware families. The performance of the models isassessed using a dataset containing instances of ransomware attacks,demonstrating their capability to accurately detect and classify ransomware. Essentially, the study aims to enhance cybersecurity measuresby leveraging advanced techniques in artificial intelligence to combat thegrowing threats posed by ransomware attacks.
Název v anglickém jazyce
Fog-Based Ransomware Detection for Internet of Medical Things Using Lighweight Machine Learning Algorithms
Popis výsledku anglicky
Instances of severe cyber threats such as aggressive attacks,malware, and ransomware have been causing significant harm to computer systems, servers, and various applications across diverse industriesand enterprises. These security issues are of paramount importance andrequire immediate attention. To address these concerns, it is crucial todetect and classify ransomware effectively for prompt response and prevention. This research employs deep learning algorithms to achieve thisgoal by applying three methods which are DNN, LSTM and Bi-LSTM.The approach involves analyzing the behavior patterns of ransomwareand identifying distinctive features that can differentiate between various types of ransomware families. The performance of the models isassessed using a dataset containing instances of ransomware attacks,demonstrating their capability to accurately detect and classify ransomware. Essentially, the study aims to enhance cybersecurity measuresby leveraging advanced techniques in artificial intelligence to combat thegrowing threats posed by ransomware attacks.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Artificial Intelligence, Theory and Applications
ISBN
978-981-9746-76-7
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
12
Strana od-do
200-211
Název nakladatele
Springer Nature
Místo vydání
Berlín
Místo konání akce
Hradec Králové, Czech Republic
Datum konání akce
10. 7. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001315630900017