Norm Augmented Reinforcement Learning Agents With Synthesized Normative Rules: A Proposed Normative Agent Framework
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021597" target="_blank" >RIV/62690094:18450/24:50021597 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.igi-global.com/gateway/article/345650" target="_blank" >https://www.igi-global.com/gateway/article/345650</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4018/JCIT.345650" target="_blank" >10.4018/JCIT.345650</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Norm Augmented Reinforcement Learning Agents With Synthesized Normative Rules: A Proposed Normative Agent Framework
Popis výsledku v původním jazyce
The dynamic deontic (DD) is a norm synthesis framework that extracts normative rules from reinforcement learning (RL), however it was not designed to be applied in agent coordination. This study proposes a norm augmented reinforcement learning framework (NARLF) that extends said model to include a norm deliberation mechanism for learned norms re-imputation for norm biased decision-making RL agents. This study aims to test the effects of synthesized norms applied on-line and off-line on agent learning performance. The framework consists of the DD framework extended with a pre-processing and deliberation component to allow re-imputation of normative rules. A deliberation model, the Norm Augmented Q-Table (NAugQT), is proposed to map normative rules into RL agents via q-values weight updates. Results show that the framework is able to map and improve RL agent’s performance but only when synthesized off-line edited absolute norm salience value norms are used. This shows limitations when unstable salience norms are applied. Improvement in norm extraction and pre-processing are required. © 2024 IGI Global. All rights reserved.
Název v anglickém jazyce
Norm Augmented Reinforcement Learning Agents With Synthesized Normative Rules: A Proposed Normative Agent Framework
Popis výsledku anglicky
The dynamic deontic (DD) is a norm synthesis framework that extracts normative rules from reinforcement learning (RL), however it was not designed to be applied in agent coordination. This study proposes a norm augmented reinforcement learning framework (NARLF) that extends said model to include a norm deliberation mechanism for learned norms re-imputation for norm biased decision-making RL agents. This study aims to test the effects of synthesized norms applied on-line and off-line on agent learning performance. The framework consists of the DD framework extended with a pre-processing and deliberation component to allow re-imputation of normative rules. A deliberation model, the Norm Augmented Q-Table (NAugQT), is proposed to map normative rules into RL agents via q-values weight updates. Results show that the framework is able to map and improve RL agent’s performance but only when synthesized off-line edited absolute norm salience value norms are used. This shows limitations when unstable salience norms are applied. Improvement in norm extraction and pre-processing are required. © 2024 IGI Global. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Cases on Information Technology
ISSN
1548-7717
e-ISSN
1548-7725
Svazek periodika
26
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
34
Strana od-do
1-34
Kód UT WoS článku
001283032700001
EID výsledku v databázi Scopus
2-s2.0-85199374981