Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An Attention-Based Deep Network for Plant Disease Classification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021938" target="_blank" >RIV/62690094:18450/24:50021938 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://mgv.sggw.edu.pl/article/view/9197" target="_blank" >https://mgv.sggw.edu.pl/article/view/9197</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.22630/MGV.2024.33.1.3" target="_blank" >10.22630/MGV.2024.33.1.3</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An Attention-Based Deep Network for Plant Disease Classification

  • Popis výsledku v původním jazyce

    Plant disease classification using machine learning in a real agricultural field environment is a difficult task. Often, an automated plant disease diagnosis method might fail to capture and interpret discriminatory information due to small variations among leaf sub-categories. Yet, modern Convolutional Neural Networks (CNNs) have achieved decent success in discriminating various plant diseases using leave images. A few existing methods have applied additional pre-processing modules or sub-networks to tackle this challenge. Sometimes, the feature maps ignore partial information for holistic description by part-mining. A deep CNN that emphasizes integration of partial descriptiveness of leaf regions is proposed in this work. The efficacious attention mechanism is integrated with high-level feature map of a base CNN for enhancing feature representation. The proposed method focuses on important diseased areas in leaves, and employs an attention weighting scheme for utilizing useful neighborhood information. The proposed Attention-based network for Plant Disease Classification (APDC) method has achieved state-of-the-art performances on four public plant datasets containing visual/thermal images. The best top-1 accuracies attained by the proposed APDC are: PlantPathology 97.74%, PaddyCrop 99.62%, PaddyDoctor 99.65%, and PlantVillage 99.97%. These results justify the suitability of proposed method. © 2024 Institute of Information Technology, Warsaw University of Life Sciences - SGGW. All rights reserved.

  • Název v anglickém jazyce

    An Attention-Based Deep Network for Plant Disease Classification

  • Popis výsledku anglicky

    Plant disease classification using machine learning in a real agricultural field environment is a difficult task. Often, an automated plant disease diagnosis method might fail to capture and interpret discriminatory information due to small variations among leaf sub-categories. Yet, modern Convolutional Neural Networks (CNNs) have achieved decent success in discriminating various plant diseases using leave images. A few existing methods have applied additional pre-processing modules or sub-networks to tackle this challenge. Sometimes, the feature maps ignore partial information for holistic description by part-mining. A deep CNN that emphasizes integration of partial descriptiveness of leaf regions is proposed in this work. The efficacious attention mechanism is integrated with high-level feature map of a base CNN for enhancing feature representation. The proposed method focuses on important diseased areas in leaves, and employs an attention weighting scheme for utilizing useful neighborhood information. The proposed Attention-based network for Plant Disease Classification (APDC) method has achieved state-of-the-art performances on four public plant datasets containing visual/thermal images. The best top-1 accuracies attained by the proposed APDC are: PlantPathology 97.74%, PaddyCrop 99.62%, PaddyDoctor 99.65%, and PlantVillage 99.97%. These results justify the suitability of proposed method. © 2024 Institute of Information Technology, Warsaw University of Life Sciences - SGGW. All rights reserved.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Machine Graphics and Vision

  • ISSN

    1230-0535

  • e-ISSN

    2720-250X

  • Svazek periodika

    33

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    PL - Polská republika

  • Počet stran výsledku

    21

  • Strana od-do

    47-67

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85210943555