ON FACTORIZATION OF THE FIBONACCI AND LUCAS NUMBERS USING TRIDIAGONAL DETERMINANTS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F12%3A50000618" target="_blank" >RIV/62690094:18470/12:50000618 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/article/10.2478%2Fs12175-012-0020-2" target="_blank" >http://link.springer.com/article/10.2478%2Fs12175-012-0020-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/s12175-012-0020-2" target="_blank" >10.2478/s12175-012-0020-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ON FACTORIZATION OF THE FIBONACCI AND LUCAS NUMBERS USING TRIDIAGONAL DETERMINANTS
Popis výsledku v původním jazyce
The aim of this paper is to give new results about factorizations of the Fibonacci numbers Fn and the Lucas numbers Ln. These numbers are defined by the second order recurrence relation an+2 = an+1+an with the initial terms F0 = 0, F1 = 1 and L0 = 2, L1= 1, respectively. Proofs of our theorems are done with the help of connections between determinants of tridiagonal matrices and the Fibonacci and the Lucas numbers using the Chebyshev polynomials. Interesting connections were found between the determinants of tridiagonal matrices and the Fibonacci or Lucas numbers. For example, Strang in 1998 presented a family of the n x n tridiagonal matrices, which determinants |M(n)| are the Fibonacci numbers F2n+2. Cahill et al. derived a general recurrence for the determinants of a sequence of symmetric tridiagonal matrices and used some sequences of this type for searching of the interesting complex factorizations of the Fibonacci and Lucas numbers. This paper extends the approach used by Cahill
Název v anglickém jazyce
ON FACTORIZATION OF THE FIBONACCI AND LUCAS NUMBERS USING TRIDIAGONAL DETERMINANTS
Popis výsledku anglicky
The aim of this paper is to give new results about factorizations of the Fibonacci numbers Fn and the Lucas numbers Ln. These numbers are defined by the second order recurrence relation an+2 = an+1+an with the initial terms F0 = 0, F1 = 1 and L0 = 2, L1= 1, respectively. Proofs of our theorems are done with the help of connections between determinants of tridiagonal matrices and the Fibonacci and the Lucas numbers using the Chebyshev polynomials. Interesting connections were found between the determinants of tridiagonal matrices and the Fibonacci or Lucas numbers. For example, Strang in 1998 presented a family of the n x n tridiagonal matrices, which determinants |M(n)| are the Fibonacci numbers F2n+2. Cahill et al. derived a general recurrence for the determinants of a sequence of symmetric tridiagonal matrices and used some sequences of this type for searching of the interesting complex factorizations of the Fibonacci and Lucas numbers. This paper extends the approach used by Cahill
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematica Slovaca
ISSN
0139-9918
e-ISSN
—
Svazek periodika
62
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
12
Strana od-do
439-450
Kód UT WoS článku
000303868800007
EID výsledku v databázi Scopus
—