ON SPECTRAL GAPS OF A LAPLACIAN IN A STRIP WITH A BOUNDED PERIODIC PERTURBATION
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F18%3A50014840" target="_blank" >RIV/62690094:18470/18:50014840 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.13108/2018-10-2-14" target="_blank" >http://dx.doi.org/10.13108/2018-10-2-14</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13108/2018-10-2-14" target="_blank" >10.13108/2018-10-2-14</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ON SPECTRAL GAPS OF A LAPLACIAN IN A STRIP WITH A BOUNDED PERIODIC PERTURBATION
Popis výsledku v původním jazyce
In the work we consider the Laplacian subject to the Dirichlet condition in an infinite planar strip perturbed by a periodic operator. The perturbation is introduced as an arbitrary bounded periodic operator in L-2 on the periodicity cell; then this operator is extended periodically on the entire strip. We study the band spectrum of such operator. The main obtained result is the absence of the spectral gaps in the lower part of the spectrum for a sufficiently small potential. The upper bound for the period ensuring such result is written explicitly as a certain number. It also involves a certain characteristics of the perturbing operator, which can be nonrigorously described as "the maximal oscillation of the perturbation". We also explicitly write out the length of the part of the spectrum, in which the absence of the gaps is guaranteed. Such result can be regarded as a partial proof of the strong Bethe-Sommerfeld conjecture on absence of internal gaps in the band spectra of periodic operators for sufficiently small periods.
Název v anglickém jazyce
ON SPECTRAL GAPS OF A LAPLACIAN IN A STRIP WITH A BOUNDED PERIODIC PERTURBATION
Popis výsledku anglicky
In the work we consider the Laplacian subject to the Dirichlet condition in an infinite planar strip perturbed by a periodic operator. The perturbation is introduced as an arbitrary bounded periodic operator in L-2 on the periodicity cell; then this operator is extended periodically on the entire strip. We study the band spectrum of such operator. The main obtained result is the absence of the spectral gaps in the lower part of the spectrum for a sufficiently small potential. The upper bound for the period ensuring such result is written explicitly as a certain number. It also involves a certain characteristics of the perturbing operator, which can be nonrigorously described as "the maximal oscillation of the perturbation". We also explicitly write out the length of the part of the spectrum, in which the absence of the gaps is guaranteed. Such result can be regarded as a partial proof of the strong Bethe-Sommerfeld conjecture on absence of internal gaps in the band spectra of periodic operators for sufficiently small periods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
UFA MATHEMATICAL JOURNAL
ISSN
2074-1863
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
RU - Ruská federace
Počet stran výsledku
17
Strana od-do
14-30
Kód UT WoS článku
000438890500002
EID výsledku v databázi Scopus
—