Gaps in the Spectrum of the Laplacian in a Strip with Periodic Delta Interaction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F19%3A50016100" target="_blank" >RIV/62690094:18470/19:50016100 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/content/pdf/10.1134%2FS0081543819040047.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1134%2FS0081543819040047.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1134/S0081543819040047" target="_blank" >10.1134/S0081543819040047</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Gaps in the Spectrum of the Laplacian in a Strip with Periodic Delta Interaction
Popis výsledku v původním jazyce
We consider the Laplace operator in an infinite planar strip with a periodic delta interaction. The width of the strip is fixed and for simplicity is chosen equal to pi. The delta interaction is introduced on a periodic system of curves. Each curve consists of a finite number of segments, each having smoothness C-1. The curves are supposed to be strictly internal and do not intersect the boundaries of the strip. The period of their location is 2 epsilon pi, where epsilon is a sufficiently small number. The function describing the delta interaction is also periodic on the system of curves and is assumed to be bounded and measurable. The main result is the following fact. If epsilon <= epsilon(0), where epsilon(0) is a certain explicitly calculated number and the norm of the function describing the delta interaction is smaller than some explicit constant, then the lower part of the spectrum of the operator has no internal gaps. The lower part is understood as the band of the spectrum until some point, which is explicitly calculated in terms of the parameter epsilon as a rather simple function. This result can be considered as a first step to the proof of the strong Bethe-Sommerfeld conjecture on the complete absence of gaps in the spectrum of an operator for a sufficiently small period of location of delta interactions.
Název v anglickém jazyce
Gaps in the Spectrum of the Laplacian in a Strip with Periodic Delta Interaction
Popis výsledku anglicky
We consider the Laplace operator in an infinite planar strip with a periodic delta interaction. The width of the strip is fixed and for simplicity is chosen equal to pi. The delta interaction is introduced on a periodic system of curves. Each curve consists of a finite number of segments, each having smoothness C-1. The curves are supposed to be strictly internal and do not intersect the boundaries of the strip. The period of their location is 2 epsilon pi, where epsilon is a sufficiently small number. The function describing the delta interaction is also periodic on the system of curves and is assumed to be bounded and measurable. The main result is the following fact. If epsilon <= epsilon(0), where epsilon(0) is a certain explicitly calculated number and the norm of the function describing the delta interaction is smaller than some explicit constant, then the lower part of the spectrum of the operator has no internal gaps. The lower part is understood as the band of the spectrum until some point, which is explicitly calculated in terms of the parameter epsilon as a rather simple function. This result can be considered as a first step to the proof of the strong Bethe-Sommerfeld conjecture on the complete absence of gaps in the spectrum of an operator for a sufficiently small period of location of delta interactions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS
ISSN
0081-5438
e-ISSN
—
Svazek periodika
305
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
"S16"-"S23"
Kód UT WoS článku
000491519000004
EID výsledku v databázi Scopus
—