Universal Cartan-Lie algebroid of an anchored bundle with connection and compatible geometries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F19%3A50015565" target="_blank" >RIV/62690094:18470/19:50015565 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0393044018305734?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0393044018305734?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.geomphys.2018.09.004" target="_blank" >10.1016/j.geomphys.2018.09.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Universal Cartan-Lie algebroid of an anchored bundle with connection and compatible geometries
Popis výsledku v původním jazyce
Consider an anchored bundle (E, rho), i.e. a vector bundle E -> M equipped with a bundle map rho: E -> TM covering the identity. M. Kapranov showed in the context of Lie-Rinehard algebras that there exists an extension of this anchored bundle to an infinite rank universal free Lie algebroid FR(E) superset of E. We adapt his construction to the case of an anchored bundle equipped with an arbitrary connection, (E, del), and show that it gives rise to a unique connection, (del) over tilde on FR(E) which is compatible with its Lie algebroid structure, thus turning (FR(E), (del) over tilde) into a Cartan-Lie algebroid. Moreover, this construction is universal: any connection-preserving vector bundle morphism from (E, del) to a Cartan-Lie Algebroid (A, (del) over bar) factors through a unique Cartan-Lie algebroid morphism from (FR(E), (del) over tilde) to (A, (del) over bar). Suppose that, in addition, M is equipped with a geometrical structure defined by some tensor field t which is compatible with (E, rho, del) in the sense of being annihilated by a natural E-connection that one can associate to these data. For example, for a Riemannian base (M, g) of an involutive anchored bundle (E, rho), this condition implies that M carries a Riemannian foliation. It is shown that every E-compatible tensor field t becomes invariant with respect to the Lie algebroid representation associated canonically to the Cartan-Lie algebroid (FR(E), (del) over tilde).
Název v anglickém jazyce
Universal Cartan-Lie algebroid of an anchored bundle with connection and compatible geometries
Popis výsledku anglicky
Consider an anchored bundle (E, rho), i.e. a vector bundle E -> M equipped with a bundle map rho: E -> TM covering the identity. M. Kapranov showed in the context of Lie-Rinehard algebras that there exists an extension of this anchored bundle to an infinite rank universal free Lie algebroid FR(E) superset of E. We adapt his construction to the case of an anchored bundle equipped with an arbitrary connection, (E, del), and show that it gives rise to a unique connection, (del) over tilde on FR(E) which is compatible with its Lie algebroid structure, thus turning (FR(E), (del) over tilde) into a Cartan-Lie algebroid. Moreover, this construction is universal: any connection-preserving vector bundle morphism from (E, del) to a Cartan-Lie Algebroid (A, (del) over bar) factors through a unique Cartan-Lie algebroid morphism from (FR(E), (del) over tilde) to (A, (del) over bar). Suppose that, in addition, M is equipped with a geometrical structure defined by some tensor field t which is compatible with (E, rho, del) in the sense of being annihilated by a natural E-connection that one can associate to these data. For example, for a Riemannian base (M, g) of an involutive anchored bundle (E, rho), this condition implies that M carries a Riemannian foliation. It is shown that every E-compatible tensor field t becomes invariant with respect to the Lie algebroid representation associated canonically to the Cartan-Lie algebroid (FR(E), (del) over tilde).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-00496S" target="_blank" >GA18-00496S: Singulární prostory ze speciální holonomie a foliací</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of geometry and physics
ISSN
0393-0440
e-ISSN
—
Svazek periodika
135
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
6
Strana od-do
1-6
Kód UT WoS článku
000453339800001
EID výsledku v databázi Scopus
2-s2.0-85054093958