Lie algebroids, gauge theories, and compatible geometrical structures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F19%3A50015566" target="_blank" >RIV/62690094:18470/19:50015566 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.worldscientific.com/doi/abs/10.1142/S0129055X19500156" target="_blank" >https://www.worldscientific.com/doi/abs/10.1142/S0129055X19500156</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0129055X19500156" target="_blank" >10.1142/S0129055X19500156</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lie algebroids, gauge theories, and compatible geometrical structures
Popis výsledku v původním jazyce
The construction of gauge theories beyond the realm of Lie groups and algebras leads one to consider Lie groupoids and algebroids equipped with additional geometrical structures which, for gauge invariance of the construction, need to satisfy particular compatibility conditions. This paper is supposed to analyze these compatibilities from a mathematical perspective. In particular, we show that the compatibility of a connection with a Lie algebroid that one finds is the Cartan condition, introduced previously by A. Blaom. For the metric on the base M of a Lie algebroid equipped with any connection, we show that the compatibility suggested from gauge theories implies that the foliation induced by the Lie algebroid becomes a Riemannian foliation. Building upon a result of del Hoyo and Fernandes, we prove, furthermore, that every Lie algebroid integrating to a proper Lie groupoid admits a compatible Riemannian base. We also consider the case where the base is equipped with a compatible symplectic or generalized Riemannian structure.
Název v anglickém jazyce
Lie algebroids, gauge theories, and compatible geometrical structures
Popis výsledku anglicky
The construction of gauge theories beyond the realm of Lie groups and algebras leads one to consider Lie groupoids and algebroids equipped with additional geometrical structures which, for gauge invariance of the construction, need to satisfy particular compatibility conditions. This paper is supposed to analyze these compatibilities from a mathematical perspective. In particular, we show that the compatibility of a connection with a Lie algebroid that one finds is the Cartan condition, introduced previously by A. Blaom. For the metric on the base M of a Lie algebroid equipped with any connection, we show that the compatibility suggested from gauge theories implies that the foliation induced by the Lie algebroid becomes a Riemannian foliation. Building upon a result of del Hoyo and Fernandes, we prove, furthermore, that every Lie algebroid integrating to a proper Lie groupoid admits a compatible Riemannian base. We also consider the case where the base is equipped with a compatible symplectic or generalized Riemannian structure.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-00496S" target="_blank" >GA18-00496S: Singulární prostory ze speciální holonomie a foliací</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Reviews in mathematical physics
ISSN
0129-055X
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
27
Strana od-do
"Article number: 1950015"
Kód UT WoS článku
000465086000004
EID výsledku v databázi Scopus
2-s2.0-85058235718