Synthesis of SnSe quantum dots by successive ionic layer adsorption and reaction (SILAR) method for efficient solar cells applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50016713" target="_blank" >RIV/62690094:18470/20:50016713 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0038092X20301560" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0038092X20301560</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.solener.2020.02.050" target="_blank" >10.1016/j.solener.2020.02.050</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Synthesis of SnSe quantum dots by successive ionic layer adsorption and reaction (SILAR) method for efficient solar cells applications
Popis výsledku v původním jazyce
Quantum dots (QDs) are one of the promising materials in the development of third-generation photovoltaics. QDs have the advantage of multiple exciton generation (MEG), high absorption coefficient and tuneable bandgap, low cost and easy synthesis. The QDs act as analogues to dye molecules in QD sensitized solar cells (QDSSCs) when compared with traditional dye-sensitized solar cells (DSSCs). Extending the absorption range of quantum dots is one of potential solutions for enhancing photoconversion efficiencies. The sensitization of SnSe quantum dots on theTiO(2) mesoporous layers is carried by a successive ionic layer adsorption and reaction (SILAR) method in a glove box. The advantages of SILAR method are a high loading rate and wide coverage of the TiO2 matrix by the quantum dots. The device has exhibited a photoconversion efficiency of 0.78% which is the known best among the SnSe quantum dot-based solar cells.
Název v anglickém jazyce
Synthesis of SnSe quantum dots by successive ionic layer adsorption and reaction (SILAR) method for efficient solar cells applications
Popis výsledku anglicky
Quantum dots (QDs) are one of the promising materials in the development of third-generation photovoltaics. QDs have the advantage of multiple exciton generation (MEG), high absorption coefficient and tuneable bandgap, low cost and easy synthesis. The QDs act as analogues to dye molecules in QD sensitized solar cells (QDSSCs) when compared with traditional dye-sensitized solar cells (DSSCs). Extending the absorption range of quantum dots is one of potential solutions for enhancing photoconversion efficiencies. The sensitization of SnSe quantum dots on theTiO(2) mesoporous layers is carried by a successive ionic layer adsorption and reaction (SILAR) method in a glove box. The advantages of SILAR method are a high loading rate and wide coverage of the TiO2 matrix by the quantum dots. The device has exhibited a photoconversion efficiency of 0.78% which is the known best among the SnSe quantum dot-based solar cells.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SOLAR ENERGY
ISSN
0038-092X
e-ISSN
—
Svazek periodika
199
Číslo periodika v rámci svazku
březen
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
5
Strana od-do
570-574
Kód UT WoS článku
000525763900053
EID výsledku v databázi Scopus
2-s2.0-85079842046