Asymptotic analysis of mean exit time for dynamical systems with asingle well potential
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50017077" target="_blank" >RIV/62690094:18470/20:50017077 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0022039620302229/pdfft?md5=998bcec5efc4f4e26eb8f35724fd7749&pid=1-s2.0-S0022039620302229-main.pdf" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022039620302229/pdfft?md5=998bcec5efc4f4e26eb8f35724fd7749&pid=1-s2.0-S0022039620302229-main.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2020.04.045" target="_blank" >10.1016/j.jde.2020.04.045</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Asymptotic analysis of mean exit time for dynamical systems with asingle well potential
Popis výsledku v původním jazyce
We study the mean exit time from a bounded multi-dimensional domain Omega of the stochastic process governed by the overdamped Langevin dynamics. This mean exit time solves the boundary value problem (-epsilon(2)Delta + del V . del)u(epsilon) = 1 in Omega, u(epsilon) = 0 on partial derivative Omega, epsilon -> 0. The function Vis smooth enough and has the only minimum at the origin contained in Omega; the minimum can be degenerate. At other points of Omega, the gradient of Vis non-zero and the normal derivative of Vat the boundary partial derivative Omega does not vanish. Our main result is a complete asymptotic expansion for u(epsilon). The asymptotics for u(epsilon) involves an exponentially large term, which we find in a closed form. We also construct a power in epsilon asymptotic expansion such that this expansion and a mentioned exponentially large term approximate u(epsilon) up to arbitrary power of epsilon. (C) 2020 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
Asymptotic analysis of mean exit time for dynamical systems with asingle well potential
Popis výsledku anglicky
We study the mean exit time from a bounded multi-dimensional domain Omega of the stochastic process governed by the overdamped Langevin dynamics. This mean exit time solves the boundary value problem (-epsilon(2)Delta + del V . del)u(epsilon) = 1 in Omega, u(epsilon) = 0 on partial derivative Omega, epsilon -> 0. The function Vis smooth enough and has the only minimum at the origin contained in Omega; the minimum can be degenerate. At other points of Omega, the gradient of Vis non-zero and the normal derivative of Vat the boundary partial derivative Omega does not vanish. Our main result is a complete asymptotic expansion for u(epsilon). The asymptotics for u(epsilon) involves an exponentially large term, which we find in a closed form. We also construct a power in epsilon asymptotic expansion such that this expansion and a mentioned exponentially large term approximate u(epsilon) up to arbitrary power of epsilon. (C) 2020 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of differential equations
ISSN
0022-0396
e-ISSN
—
Svazek periodika
269
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
39
Strana od-do
78-116
Kód UT WoS článku
000538395600004
EID výsledku v databázi Scopus
—