Elliptic Operators in Multidimensional Cylinders with Frequently Alternating Boundary Conditions Along a Given Curve
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50017100" target="_blank" >RIV/62690094:18470/20:50017100 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10958-019-04624-z" target="_blank" >https://link.springer.com/article/10.1007/s10958-019-04624-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10958-019-04624-z" target="_blank" >10.1007/s10958-019-04624-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Elliptic Operators in Multidimensional Cylinders with Frequently Alternating Boundary Conditions Along a Given Curve
Popis výsledku v původním jazyce
We consider a selfadjoint elliptic operator in an infinite multidimensional cylinder with the Dirichlet boundary condition which is replaced by the Robin condition on small sets located along a given line on the boundary. The shape and distribution of these sets are arbitrary. The characteristic linear size of these sets is a small parameter of the problem. It is shown that the resolvent of such an operator converges to the resolvent of the homogenized operator, and an estimate for the convergence rate is obtained. The homogenized operator is the same operator, but without alternating boundary conditions. The difference of resolvents is estimated in the norm of bounded operators acting from L2 to W21. If the small sets are periodically distributed and have the same shape and the Robin condition is replaced by the Neumann condition, we derive two-sided asymptotic estimates for the lower band functions, which provides the possibility to estimate from below the length of the first band of the spectrum.
Název v anglickém jazyce
Elliptic Operators in Multidimensional Cylinders with Frequently Alternating Boundary Conditions Along a Given Curve
Popis výsledku anglicky
We consider a selfadjoint elliptic operator in an infinite multidimensional cylinder with the Dirichlet boundary condition which is replaced by the Robin condition on small sets located along a given line on the boundary. The shape and distribution of these sets are arbitrary. The characteristic linear size of these sets is a small parameter of the problem. It is shown that the resolvent of such an operator converges to the resolvent of the homogenized operator, and an estimate for the convergence rate is obtained. The homogenized operator is the same operator, but without alternating boundary conditions. The difference of resolvents is estimated in the norm of bounded operators acting from L2 to W21. If the small sets are periodically distributed and have the same shape and the Robin condition is replaced by the Neumann condition, we derive two-sided asymptotic estimates for the lower band functions, which provides the possibility to estimate from below the length of the first band of the spectrum.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of mathematical sciences
ISSN
1072-3374
e-ISSN
—
Svazek periodika
244
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
378-389
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85076917754