On a Certain Generalized Functional Equation for Set-Valued Functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50017644" target="_blank" >RIV/62690094:18470/20:50017644 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/8/12/2243" target="_blank" >https://www.mdpi.com/2227-7390/8/12/2243</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math8122243" target="_blank" >10.3390/math8122243</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On a Certain Generalized Functional Equation for Set-Valued Functions
Popis výsledku v původním jazyce
he aim of the paper is to generalize results by Sikorska on some functional equations for set-valued functions. In the paper, a tool is described for solving a generalized type of an integral-functional equation for a set-valued function F:X -> cc(Y), where X is a real vector space and Y is a locally convex real linear metric space with an invariant metric. Most general results are described in the case of a compact topological group G equipped with the right-invariant Haar measure acting on X. Further results are found if the group G is finite or Y is Asplund space. The main results are applied to an example where X=R-2 and Y=R-n, n is an element of N, and G is the unitary group U(1).
Název v anglickém jazyce
On a Certain Generalized Functional Equation for Set-Valued Functions
Popis výsledku anglicky
he aim of the paper is to generalize results by Sikorska on some functional equations for set-valued functions. In the paper, a tool is described for solving a generalized type of an integral-functional equation for a set-valued function F:X -> cc(Y), where X is a real vector space and Y is a locally convex real linear metric space with an invariant metric. Most general results are described in the case of a compact topological group G equipped with the right-invariant Haar measure acting on X. Further results are found if the group G is finite or Y is Asplund space. The main results are applied to an example where X=R-2 and Y=R-n, n is an element of N, and G is the unitary group U(1).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
15
Strana od-do
"Article Number: 2243"
Kód UT WoS článku
000601977100001
EID výsledku v databázi Scopus
2-s2.0-85098212784