ON INFINITE SYSTEM OF RESONANCE AND EIGENVALUES WITH EXPONENTIAL ASYMPTOTICS GENERATED BY DISTANT PERTURBATIONS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50017890" target="_blank" >RIV/62690094:18470/20:50017890 - isvavai.cz</a>
Výsledek na webu
<a href="https://matem.anrb.ru/sites/default/files/files/vupe48/Borisov.pdf" target="_blank" >https://matem.anrb.ru/sites/default/files/files/vupe48/Borisov.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13108/2020-12-4-3" target="_blank" >10.13108/2020-12-4-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ON INFINITE SYSTEM OF RESONANCE AND EIGENVALUES WITH EXPONENTIAL ASYMPTOTICS GENERATED BY DISTANT PERTURBATIONS
Popis výsledku v původním jazyce
We consider an one-dimensional Schrodinger operator with four distant potentials separated by large distance. All distances are proportional to a sam large parameter. The initial potentials are of kink shapes, which are glued mutually so that the final potential vanishes at infinity and between the second and third initial potentials and it is equal to one between the first and the second potentials as well as between the third and fourth potentials. The potentials are not supposed to be real and can be complex-valued. We show that under certain, rather natural and easily realizable conditions on the four initial potentials, the considered operator with distant potentials possesses infinitely many resonances and/or eigenvalues of form lambda - k(n)(2), n is an element of Z, which accumulate along a given segment in the essential spectrum. The distance between neighbouring numbers k(n) is of order the reciprocal of the distance between the potentials, while the imaginary parts of these quantities are exponentially small. For the numbers k(n) we obtain the representations via the limits of some explicitly calculated sequences and the sum of infinite series. We also prove explicit effective estimates for the convergence rates of the sequences and for the remainders of the series.
Název v anglickém jazyce
ON INFINITE SYSTEM OF RESONANCE AND EIGENVALUES WITH EXPONENTIAL ASYMPTOTICS GENERATED BY DISTANT PERTURBATIONS
Popis výsledku anglicky
We consider an one-dimensional Schrodinger operator with four distant potentials separated by large distance. All distances are proportional to a sam large parameter. The initial potentials are of kink shapes, which are glued mutually so that the final potential vanishes at infinity and between the second and third initial potentials and it is equal to one between the first and the second potentials as well as between the third and fourth potentials. The potentials are not supposed to be real and can be complex-valued. We show that under certain, rather natural and easily realizable conditions on the four initial potentials, the considered operator with distant potentials possesses infinitely many resonances and/or eigenvalues of form lambda - k(n)(2), n is an element of Z, which accumulate along a given segment in the essential spectrum. The distance between neighbouring numbers k(n) is of order the reciprocal of the distance between the potentials, while the imaginary parts of these quantities are exponentially small. For the numbers k(n) we obtain the representations via the limits of some explicitly calculated sequences and the sum of infinite series. We also prove explicit effective estimates for the convergence rates of the sequences and for the remainders of the series.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
UFA MATHEMATICAL JOURNAL
ISSN
2074-1863
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
RU - Ruská federace
Počet stran výsledku
16
Strana od-do
3-18
Kód UT WoS článku
000607979900001
EID výsledku v databázi Scopus
—