Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

ON INFINITE SYSTEM OF RESONANCE AND EIGENVALUES WITH EXPONENTIAL ASYMPTOTICS GENERATED BY DISTANT PERTURBATIONS

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50017890" target="_blank" >RIV/62690094:18470/20:50017890 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://matem.anrb.ru/sites/default/files/files/vupe48/Borisov.pdf" target="_blank" >https://matem.anrb.ru/sites/default/files/files/vupe48/Borisov.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.13108/2020-12-4-3" target="_blank" >10.13108/2020-12-4-3</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    ON INFINITE SYSTEM OF RESONANCE AND EIGENVALUES WITH EXPONENTIAL ASYMPTOTICS GENERATED BY DISTANT PERTURBATIONS

  • Popis výsledku v původním jazyce

    We consider an one-dimensional Schrodinger operator with four distant potentials separated by large distance. All distances are proportional to a sam large parameter. The initial potentials are of kink shapes, which are glued mutually so that the final potential vanishes at infinity and between the second and third initial potentials and it is equal to one between the first and the second potentials as well as between the third and fourth potentials. The potentials are not supposed to be real and can be complex-valued. We show that under certain, rather natural and easily realizable conditions on the four initial potentials, the considered operator with distant potentials possesses infinitely many resonances and/or eigenvalues of form lambda - k(n)(2), n is an element of Z, which accumulate along a given segment in the essential spectrum. The distance between neighbouring numbers k(n) is of order the reciprocal of the distance between the potentials, while the imaginary parts of these quantities are exponentially small. For the numbers k(n) we obtain the representations via the limits of some explicitly calculated sequences and the sum of infinite series. We also prove explicit effective estimates for the convergence rates of the sequences and for the remainders of the series.

  • Název v anglickém jazyce

    ON INFINITE SYSTEM OF RESONANCE AND EIGENVALUES WITH EXPONENTIAL ASYMPTOTICS GENERATED BY DISTANT PERTURBATIONS

  • Popis výsledku anglicky

    We consider an one-dimensional Schrodinger operator with four distant potentials separated by large distance. All distances are proportional to a sam large parameter. The initial potentials are of kink shapes, which are glued mutually so that the final potential vanishes at infinity and between the second and third initial potentials and it is equal to one between the first and the second potentials as well as between the third and fourth potentials. The potentials are not supposed to be real and can be complex-valued. We show that under certain, rather natural and easily realizable conditions on the four initial potentials, the considered operator with distant potentials possesses infinitely many resonances and/or eigenvalues of form lambda - k(n)(2), n is an element of Z, which accumulate along a given segment in the essential spectrum. The distance between neighbouring numbers k(n) is of order the reciprocal of the distance between the potentials, while the imaginary parts of these quantities are exponentially small. For the numbers k(n) we obtain the representations via the limits of some explicitly calculated sequences and the sum of infinite series. We also prove explicit effective estimates for the convergence rates of the sequences and for the remainders of the series.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    UFA MATHEMATICAL JOURNAL

  • ISSN

    2074-1863

  • e-ISSN

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    RU - Ruská federace

  • Počet stran výsledku

    16

  • Strana od-do

    3-18

  • Kód UT WoS článku

    000607979900001

  • EID výsledku v databázi Scopus