Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On finitely many resonances emerging under distant perturbations in multi-dimensional cylinders

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50017889" target="_blank" >RIV/62690094:18470/21:50017889 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0022247X20309720?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022247X20309720?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2020.124809" target="_blank" >10.1016/j.jmaa.2020.124809</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On finitely many resonances emerging under distant perturbations in multi-dimensional cylinders

  • Popis výsledku v původním jazyce

    We consider a general elliptic operator in an infinite multi-dimensional cylinder with several distant perturbations; this operator is obtained by &quot;gluing&quot; several single perturbation operators H-(k), k = 1, ..., n, at large distances. The coefficients of each operator H-(k) are periodic in the outlets of the cylinder; the structure of these periodic parts at different outlets can be different. We consider a point lambda(0) is an element of R in the essential spectrum of the operator with several distant perturbations and assume that this point is not in the essential spectra of middle operators H-(k), k = 2, ..., n - 1, but is an eigenvalue of at least one of H-(k), k = 1, ..., n. Under such assumption we show that the operator with several distant perturbations possesses finitely many resonances in the vicinity of lambda(0). We find the leading terms in asymptotics for these resonances, which turn out to be exponentially small. We also conjecture that the made assumption selects the only case, when the distant perturbations produce finitely many resonances in the vicinity of lambda(0). Namely, as lambda(0) is in the essential spectrum of at least one of operators H-(k), k = 2, ..., n - 1, we do expect that infinitely many resonances emerge in the vicinity of lambda(0). (C) 2020 Elsevier Inc. All rights reserved.

  • Název v anglickém jazyce

    On finitely many resonances emerging under distant perturbations in multi-dimensional cylinders

  • Popis výsledku anglicky

    We consider a general elliptic operator in an infinite multi-dimensional cylinder with several distant perturbations; this operator is obtained by &quot;gluing&quot; several single perturbation operators H-(k), k = 1, ..., n, at large distances. The coefficients of each operator H-(k) are periodic in the outlets of the cylinder; the structure of these periodic parts at different outlets can be different. We consider a point lambda(0) is an element of R in the essential spectrum of the operator with several distant perturbations and assume that this point is not in the essential spectra of middle operators H-(k), k = 2, ..., n - 1, but is an eigenvalue of at least one of H-(k), k = 1, ..., n. Under such assumption we show that the operator with several distant perturbations possesses finitely many resonances in the vicinity of lambda(0). We find the leading terms in asymptotics for these resonances, which turn out to be exponentially small. We also conjecture that the made assumption selects the only case, when the distant perturbations produce finitely many resonances in the vicinity of lambda(0). Namely, as lambda(0) is in the essential spectrum of at least one of operators H-(k), k = 2, ..., n - 1, we do expect that infinitely many resonances emerge in the vicinity of lambda(0). (C) 2020 Elsevier Inc. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of mathematical analysis and applications

  • ISSN

    0022-247X

  • e-ISSN

  • Svazek periodika

    496

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    28

  • Strana od-do

    "Article Number: 124809"

  • Kód UT WoS článku

    000600560800016

  • EID výsledku v databázi Scopus

    2-s2.0-85097085712