On finitely many resonances emerging under distant perturbations in multi-dimensional cylinders
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50017889" target="_blank" >RIV/62690094:18470/21:50017889 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0022247X20309720?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022247X20309720?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2020.124809" target="_blank" >10.1016/j.jmaa.2020.124809</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On finitely many resonances emerging under distant perturbations in multi-dimensional cylinders
Popis výsledku v původním jazyce
We consider a general elliptic operator in an infinite multi-dimensional cylinder with several distant perturbations; this operator is obtained by "gluing" several single perturbation operators H-(k), k = 1, ..., n, at large distances. The coefficients of each operator H-(k) are periodic in the outlets of the cylinder; the structure of these periodic parts at different outlets can be different. We consider a point lambda(0) is an element of R in the essential spectrum of the operator with several distant perturbations and assume that this point is not in the essential spectra of middle operators H-(k), k = 2, ..., n - 1, but is an eigenvalue of at least one of H-(k), k = 1, ..., n. Under such assumption we show that the operator with several distant perturbations possesses finitely many resonances in the vicinity of lambda(0). We find the leading terms in asymptotics for these resonances, which turn out to be exponentially small. We also conjecture that the made assumption selects the only case, when the distant perturbations produce finitely many resonances in the vicinity of lambda(0). Namely, as lambda(0) is in the essential spectrum of at least one of operators H-(k), k = 2, ..., n - 1, we do expect that infinitely many resonances emerge in the vicinity of lambda(0). (C) 2020 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
On finitely many resonances emerging under distant perturbations in multi-dimensional cylinders
Popis výsledku anglicky
We consider a general elliptic operator in an infinite multi-dimensional cylinder with several distant perturbations; this operator is obtained by "gluing" several single perturbation operators H-(k), k = 1, ..., n, at large distances. The coefficients of each operator H-(k) are periodic in the outlets of the cylinder; the structure of these periodic parts at different outlets can be different. We consider a point lambda(0) is an element of R in the essential spectrum of the operator with several distant perturbations and assume that this point is not in the essential spectra of middle operators H-(k), k = 2, ..., n - 1, but is an eigenvalue of at least one of H-(k), k = 1, ..., n. Under such assumption we show that the operator with several distant perturbations possesses finitely many resonances in the vicinity of lambda(0). We find the leading terms in asymptotics for these resonances, which turn out to be exponentially small. We also conjecture that the made assumption selects the only case, when the distant perturbations produce finitely many resonances in the vicinity of lambda(0). Namely, as lambda(0) is in the essential spectrum of at least one of operators H-(k), k = 2, ..., n - 1, we do expect that infinitely many resonances emerge in the vicinity of lambda(0). (C) 2020 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of mathematical analysis and applications
ISSN
0022-247X
e-ISSN
—
Svazek periodika
496
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
28
Strana od-do
"Article Number: 124809"
Kód UT WoS článku
000600560800016
EID výsledku v databázi Scopus
2-s2.0-85097085712