Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Applications of Generative Adversarial Networks in Anomaly Detection: A Systematic Literature Review

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50018733" target="_blank" >RIV/62690094:18470/21:50018733 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9631286" target="_blank" >https://ieeexplore.ieee.org/document/9631286</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2021.3131949" target="_blank" >10.1109/ACCESS.2021.3131949</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Applications of Generative Adversarial Networks in Anomaly Detection: A Systematic Literature Review

  • Popis výsledku v původním jazyce

    Anomaly detection has become an indispensable tool for modern society, applied in a wide range of applications, from detecting fraudulent transactions to malignant brain tumors. Over time, many anomaly detection techniques have been introduced. However, in general, they all suffer from the same problem: lack of data that represents anomalous behaviour. As anomalous behaviour is usually costly (or dangerous) for a system, it is difficult to gather enough data that represents such behaviour. This, in turn, makes it difficult to develop and evaluate anomaly detection techniques. Recently, generative adversarial networks (GANs) have attracted much attention in anomaly detection research, due to their unique ability to generate new data. In this paper, we present a systematic review of the literature in this area, covering 128 papers. The goal of this review paper is to analyze the relation between anomaly detection techniques and types of GANs, to identify the most common application domains for GAN-assisted and GAN-based anomaly detection, and to assemble information on datasets and performance metrics used to assess them. Our study helps researchers and practitioners to find the most suitable GAN-assisted anomaly detection technique for their application. In addition, we present a research roadmap for future studies in this area. In summary, GANs are used in anomaly detection to address the problem of insufficient amount of data for the anomalous behaviour, either through data augmentation or representation learning. The most commonly used GAN architectures are DCGANs, standard GANs, and cGANs. The primary application domains include medicine, surveillance and intrusion detection.

  • Název v anglickém jazyce

    Applications of Generative Adversarial Networks in Anomaly Detection: A Systematic Literature Review

  • Popis výsledku anglicky

    Anomaly detection has become an indispensable tool for modern society, applied in a wide range of applications, from detecting fraudulent transactions to malignant brain tumors. Over time, many anomaly detection techniques have been introduced. However, in general, they all suffer from the same problem: lack of data that represents anomalous behaviour. As anomalous behaviour is usually costly (or dangerous) for a system, it is difficult to gather enough data that represents such behaviour. This, in turn, makes it difficult to develop and evaluate anomaly detection techniques. Recently, generative adversarial networks (GANs) have attracted much attention in anomaly detection research, due to their unique ability to generate new data. In this paper, we present a systematic review of the literature in this area, covering 128 papers. The goal of this review paper is to analyze the relation between anomaly detection techniques and types of GANs, to identify the most common application domains for GAN-assisted and GAN-based anomaly detection, and to assemble information on datasets and performance metrics used to assess them. Our study helps researchers and practitioners to find the most suitable GAN-assisted anomaly detection technique for their application. In addition, we present a research roadmap for future studies in this area. In summary, GANs are used in anomaly detection to address the problem of insufficient amount of data for the anomalous behaviour, either through data augmentation or representation learning. The most commonly used GAN architectures are DCGANs, standard GANs, and cGANs. The primary application domains include medicine, surveillance and intrusion detection.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    November

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    27

  • Strana od-do

    161003-161029

  • Kód UT WoS článku

    000730481100001

  • EID výsledku v databázi Scopus

    2-s2.0-85120564011