Applications of Generative Adversarial Networks in Anomaly Detection: A Systematic Literature Review
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F21%3A50018733" target="_blank" >RIV/62690094:18470/21:50018733 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9631286" target="_blank" >https://ieeexplore.ieee.org/document/9631286</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2021.3131949" target="_blank" >10.1109/ACCESS.2021.3131949</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Applications of Generative Adversarial Networks in Anomaly Detection: A Systematic Literature Review
Popis výsledku v původním jazyce
Anomaly detection has become an indispensable tool for modern society, applied in a wide range of applications, from detecting fraudulent transactions to malignant brain tumors. Over time, many anomaly detection techniques have been introduced. However, in general, they all suffer from the same problem: lack of data that represents anomalous behaviour. As anomalous behaviour is usually costly (or dangerous) for a system, it is difficult to gather enough data that represents such behaviour. This, in turn, makes it difficult to develop and evaluate anomaly detection techniques. Recently, generative adversarial networks (GANs) have attracted much attention in anomaly detection research, due to their unique ability to generate new data. In this paper, we present a systematic review of the literature in this area, covering 128 papers. The goal of this review paper is to analyze the relation between anomaly detection techniques and types of GANs, to identify the most common application domains for GAN-assisted and GAN-based anomaly detection, and to assemble information on datasets and performance metrics used to assess them. Our study helps researchers and practitioners to find the most suitable GAN-assisted anomaly detection technique for their application. In addition, we present a research roadmap for future studies in this area. In summary, GANs are used in anomaly detection to address the problem of insufficient amount of data for the anomalous behaviour, either through data augmentation or representation learning. The most commonly used GAN architectures are DCGANs, standard GANs, and cGANs. The primary application domains include medicine, surveillance and intrusion detection.
Název v anglickém jazyce
Applications of Generative Adversarial Networks in Anomaly Detection: A Systematic Literature Review
Popis výsledku anglicky
Anomaly detection has become an indispensable tool for modern society, applied in a wide range of applications, from detecting fraudulent transactions to malignant brain tumors. Over time, many anomaly detection techniques have been introduced. However, in general, they all suffer from the same problem: lack of data that represents anomalous behaviour. As anomalous behaviour is usually costly (or dangerous) for a system, it is difficult to gather enough data that represents such behaviour. This, in turn, makes it difficult to develop and evaluate anomaly detection techniques. Recently, generative adversarial networks (GANs) have attracted much attention in anomaly detection research, due to their unique ability to generate new data. In this paper, we present a systematic review of the literature in this area, covering 128 papers. The goal of this review paper is to analyze the relation between anomaly detection techniques and types of GANs, to identify the most common application domains for GAN-assisted and GAN-based anomaly detection, and to assemble information on datasets and performance metrics used to assess them. Our study helps researchers and practitioners to find the most suitable GAN-assisted anomaly detection technique for their application. In addition, we present a research roadmap for future studies in this area. In summary, GANs are used in anomaly detection to address the problem of insufficient amount of data for the anomalous behaviour, either through data augmentation or representation learning. The most commonly used GAN architectures are DCGANs, standard GANs, and cGANs. The primary application domains include medicine, surveillance and intrusion detection.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
27
Strana od-do
161003-161029
Kód UT WoS článku
000730481100001
EID výsledku v databázi Scopus
2-s2.0-85120564011