Anomaly detection-based condition monitoring
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43966182" target="_blank" >RIV/49777513:23520/22:43966182 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000860987900007" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000860987900007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1784/insi.2022.64.8.453" target="_blank" >10.1784/insi.2022.64.8.453</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Anomaly detection-based condition monitoring
Popis výsledku v původním jazyce
The impact of an anomaly is domain-dependent. In a dataset of network activities, an anomaly can imply an intrusion attack. Other objectives of anomaly detection are industrial damage detection, data leak prevention, identifying security vulnerabilities or military surveillance. Anomalies are observations or a sequences of observations which distribution deviates remarkably from the general distribution of the whole dataset. The big majority of the dataset consists of normal (healthy) data points. The anomalies form only a very small part of the dataset. Anomaly detection is the technique to find these observations and its methods are specific to the type of data. While there is a wide spectrum of anomaly detection approaches today, it becomes more and more difficult to keep track of all the techniques. As a matter of fact, it is not clear which of the three categories of detection methods, i.e., statistical approaches, machine learning approaches or deep learning approaches is more appropriate to detect anomalies on time-series data which are mainly used in industry. Typical industrial device has multidimensional characteristic. It is possible to measure voltage, current, active power, vibrations, rotational speed, temperature, pressure difference, etc. on such device. Early detection of anomalous behavior of industrial device can help reduce or prevent serious damage leading to significant financial lost. This paper is a summary of the methods used to detect anomalies in condition monitoring applications.
Název v anglickém jazyce
Anomaly detection-based condition monitoring
Popis výsledku anglicky
The impact of an anomaly is domain-dependent. In a dataset of network activities, an anomaly can imply an intrusion attack. Other objectives of anomaly detection are industrial damage detection, data leak prevention, identifying security vulnerabilities or military surveillance. Anomalies are observations or a sequences of observations which distribution deviates remarkably from the general distribution of the whole dataset. The big majority of the dataset consists of normal (healthy) data points. The anomalies form only a very small part of the dataset. Anomaly detection is the technique to find these observations and its methods are specific to the type of data. While there is a wide spectrum of anomaly detection approaches today, it becomes more and more difficult to keep track of all the techniques. As a matter of fact, it is not clear which of the three categories of detection methods, i.e., statistical approaches, machine learning approaches or deep learning approaches is more appropriate to detect anomalies on time-series data which are mainly used in industry. Typical industrial device has multidimensional characteristic. It is possible to measure voltage, current, active power, vibrations, rotational speed, temperature, pressure difference, etc. on such device. Early detection of anomalous behavior of industrial device can help reduce or prevent serious damage leading to significant financial lost. This paper is a summary of the methods used to detect anomalies in condition monitoring applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_026%2F0008389" target="_blank" >EF16_026/0008389: Výzkumná spolupráce pro dosažení vyšší účinnosti a spolehlivosti lopatkových strojů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INSIGHT: Non-Destructive Testing and Condition Monitoring
ISSN
1354-2575
e-ISSN
1754-4904
Svazek periodika
64
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
6
Strana od-do
453-458
Kód UT WoS článku
000860987900007
EID výsledku v databázi Scopus
2-s2.0-85137170415