Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Anomaly detection-based condition monitoring

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43966182" target="_blank" >RIV/49777513:23520/22:43966182 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000860987900007" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000860987900007</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1784/insi.2022.64.8.453" target="_blank" >10.1784/insi.2022.64.8.453</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Anomaly detection-based condition monitoring

  • Popis výsledku v původním jazyce

    The impact of an anomaly is domain-dependent. In a dataset of network activities, an anomaly can imply an intrusion attack. Other objectives of anomaly detection are industrial damage detection, data leak prevention, identifying security vulnerabilities or military surveillance. Anomalies are observations or a sequences of observations which distribution deviates remarkably from the general distribution of the whole dataset. The big majority of the dataset consists of normal (healthy) data points. The anomalies form only a very small part of the dataset. Anomaly detection is the technique to find these observations and its methods are specific to the type of data. While there is a wide spectrum of anomaly detection approaches today, it becomes more and more difficult to keep track of all the techniques. As a matter of fact, it is not clear which of the three categories of detection methods, i.e., statistical approaches, machine learning approaches or deep learning approaches is more appropriate to detect anomalies on time-series data which are mainly used in industry. Typical industrial device has multidimensional characteristic. It is possible to measure voltage, current, active power, vibrations, rotational speed, temperature, pressure difference, etc. on such device. Early detection of anomalous behavior of industrial device can help reduce or prevent serious damage leading to significant financial lost. This paper is a summary of the methods used to detect anomalies in condition monitoring applications.

  • Název v anglickém jazyce

    Anomaly detection-based condition monitoring

  • Popis výsledku anglicky

    The impact of an anomaly is domain-dependent. In a dataset of network activities, an anomaly can imply an intrusion attack. Other objectives of anomaly detection are industrial damage detection, data leak prevention, identifying security vulnerabilities or military surveillance. Anomalies are observations or a sequences of observations which distribution deviates remarkably from the general distribution of the whole dataset. The big majority of the dataset consists of normal (healthy) data points. The anomalies form only a very small part of the dataset. Anomaly detection is the technique to find these observations and its methods are specific to the type of data. While there is a wide spectrum of anomaly detection approaches today, it becomes more and more difficult to keep track of all the techniques. As a matter of fact, it is not clear which of the three categories of detection methods, i.e., statistical approaches, machine learning approaches or deep learning approaches is more appropriate to detect anomalies on time-series data which are mainly used in industry. Typical industrial device has multidimensional characteristic. It is possible to measure voltage, current, active power, vibrations, rotational speed, temperature, pressure difference, etc. on such device. Early detection of anomalous behavior of industrial device can help reduce or prevent serious damage leading to significant financial lost. This paper is a summary of the methods used to detect anomalies in condition monitoring applications.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_026%2F0008389" target="_blank" >EF16_026/0008389: Výzkumná spolupráce pro dosažení vyšší účinnosti a spolehlivosti lopatkových strojů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    INSIGHT: Non-Destructive Testing and Condition Monitoring

  • ISSN

    1354-2575

  • e-ISSN

    1754-4904

  • Svazek periodika

    64

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    6

  • Strana od-do

    453-458

  • Kód UT WoS článku

    000860987900007

  • EID výsledku v databázi Scopus

    2-s2.0-85137170415