Hopf algebroids with balancing subalgebra
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019713" target="_blank" >RIV/62690094:18470/22:50019713 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0021869322000448?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0021869322000448?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jalgebra.2022.01.027" target="_blank" >10.1016/j.jalgebra.2022.01.027</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hopf algebroids with balancing subalgebra
Popis výsledku v původním jazyce
Recently, S. Meljanac proposed a construction of a class of examples of an algebraic structure with properties very close to the Hopf algebroids H over a noncommutative base A of other authors. His examples come along with a subalgebra B of H circle times H, here called the balancing subalgebra, which contains the image of the coproduct and such that the intersection of B with the kernel of the projection H circle times H -> H circle times(A) H is a two-sided ideal in B which is moreover well behaved with respect to the antipode. We propose a set of abstract axioms covering this construction and make a detailed comparison to the Hopf algebroids of Lu. We prove that every scalar extension Hopf algebroid can be cast into this new set of axioms. We present an observation by G. Bohm that the Hopf algebroids constructed from weak Hopf algebras fit into our framework as well. At the end we discuss the change of balancing subalgebra under Drinfeld-Xu procedure of twisting of associative bialgebroids by invertible 2-cocycles. (c) 2022 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
Hopf algebroids with balancing subalgebra
Popis výsledku anglicky
Recently, S. Meljanac proposed a construction of a class of examples of an algebraic structure with properties very close to the Hopf algebroids H over a noncommutative base A of other authors. His examples come along with a subalgebra B of H circle times H, here called the balancing subalgebra, which contains the image of the coproduct and such that the intersection of B with the kernel of the projection H circle times H -> H circle times(A) H is a two-sided ideal in B which is moreover well behaved with respect to the antipode. We propose a set of abstract axioms covering this construction and make a detailed comparison to the Hopf algebroids of Lu. We prove that every scalar extension Hopf algebroid can be cast into this new set of axioms. We present an observation by G. Bohm that the Hopf algebroids constructed from weak Hopf algebras fit into our framework as well. At the end we discuss the change of balancing subalgebra under Drinfeld-Xu procedure of twisting of associative bialgebroids by invertible 2-cocycles. (c) 2022 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-00496S" target="_blank" >GA18-00496S: Singulární prostory ze speciální holonomie a foliací</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF ALGEBRA
ISSN
0021-8693
e-ISSN
1090-266X
Svazek periodika
598
Číslo periodika v rámci svazku
MAY
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
25
Strana od-do
445-469
Kód UT WoS článku
000793251800018
EID výsledku v databázi Scopus
2-s2.0-85124401038