Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Asymptotic Analysis of Boundary-Value Problems for the Laplace Operator with Frequently Alternating Type of Boundary Conditions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50021222" target="_blank" >RIV/62690094:18470/23:50021222 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s10958-023-06893-1" target="_blank" >https://link.springer.com/article/10.1007/s10958-023-06893-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10958-023-06893-1" target="_blank" >10.1007/s10958-023-06893-1</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Asymptotic Analysis of Boundary-Value Problems for the Laplace Operator with Frequently Alternating Type of Boundary Conditions

  • Popis výsledku v původním jazyce

    This work, which can be considered as a small monograph, is devoted to the study of two-and three-dimensional boundary-value problems for eigenvalues of the Laplace operator with frequently alternating type of boundary conditions. The main goal is to construct asymptotic expansions of the eigenvalues and eigenfunctions of the considered problems. Asymptotic expansions are constructed on the basis of original combinations of asymptotic analysis methods: the method of compatibility of asymptotic expansions, the boundary layer method, and the multiscale method. We perform the analysis of the coefficients of the formally constructed asymptotic series. For strictly periodic and locally periodic alternation of the boundary conditions, the described approach allows one to construct complete asymptotic expansions of the eigenvalues and eigenfunctions. In the case of nonperiodic alternation and the averaged third boundary condition, sufficiently weak conditions on the alternation structure are obtained, under which it is possible to construct the first corrections in the asymptotics for the eigenvalues and eigenfunctions. These conditions include in consideration a wide class of different cases of nonperiodic alternation. With further, very essential weakening of the conditions on the structure of alternation, it is possible to obtain two-sided estimates for the rate of convergence of the eigenvalues of the perturbed problem. It is shown that these estimates are unimprovable in order. For the corresponding eigenfunctions, we also obtain unimprovable in order estimates for the rate of convergence. © 2023, Springer Nature Switzerland AG.

  • Název v anglickém jazyce

    Asymptotic Analysis of Boundary-Value Problems for the Laplace Operator with Frequently Alternating Type of Boundary Conditions

  • Popis výsledku anglicky

    This work, which can be considered as a small monograph, is devoted to the study of two-and three-dimensional boundary-value problems for eigenvalues of the Laplace operator with frequently alternating type of boundary conditions. The main goal is to construct asymptotic expansions of the eigenvalues and eigenfunctions of the considered problems. Asymptotic expansions are constructed on the basis of original combinations of asymptotic analysis methods: the method of compatibility of asymptotic expansions, the boundary layer method, and the multiscale method. We perform the analysis of the coefficients of the formally constructed asymptotic series. For strictly periodic and locally periodic alternation of the boundary conditions, the described approach allows one to construct complete asymptotic expansions of the eigenvalues and eigenfunctions. In the case of nonperiodic alternation and the averaged third boundary condition, sufficiently weak conditions on the alternation structure are obtained, under which it is possible to construct the first corrections in the asymptotics for the eigenvalues and eigenfunctions. These conditions include in consideration a wide class of different cases of nonperiodic alternation. With further, very essential weakening of the conditions on the structure of alternation, it is possible to obtain two-sided estimates for the rate of convergence of the eigenvalues of the perturbed problem. It is shown that these estimates are unimprovable in order. For the corresponding eigenfunctions, we also obtain unimprovable in order estimates for the rate of convergence. © 2023, Springer Nature Switzerland AG.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of mathematical sciences

  • ISSN

    1072-3374

  • e-ISSN

    1573-8795

  • Svazek periodika

    277

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    118

  • Strana od-do

    841-958

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85180665503