Asymptotic Analysis of Boundary-Value Problems for the Laplace Operator with Frequently Alternating Type of Boundary Conditions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50021222" target="_blank" >RIV/62690094:18470/23:50021222 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10958-023-06893-1" target="_blank" >https://link.springer.com/article/10.1007/s10958-023-06893-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10958-023-06893-1" target="_blank" >10.1007/s10958-023-06893-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Asymptotic Analysis of Boundary-Value Problems for the Laplace Operator with Frequently Alternating Type of Boundary Conditions
Popis výsledku v původním jazyce
This work, which can be considered as a small monograph, is devoted to the study of two-and three-dimensional boundary-value problems for eigenvalues of the Laplace operator with frequently alternating type of boundary conditions. The main goal is to construct asymptotic expansions of the eigenvalues and eigenfunctions of the considered problems. Asymptotic expansions are constructed on the basis of original combinations of asymptotic analysis methods: the method of compatibility of asymptotic expansions, the boundary layer method, and the multiscale method. We perform the analysis of the coefficients of the formally constructed asymptotic series. For strictly periodic and locally periodic alternation of the boundary conditions, the described approach allows one to construct complete asymptotic expansions of the eigenvalues and eigenfunctions. In the case of nonperiodic alternation and the averaged third boundary condition, sufficiently weak conditions on the alternation structure are obtained, under which it is possible to construct the first corrections in the asymptotics for the eigenvalues and eigenfunctions. These conditions include in consideration a wide class of different cases of nonperiodic alternation. With further, very essential weakening of the conditions on the structure of alternation, it is possible to obtain two-sided estimates for the rate of convergence of the eigenvalues of the perturbed problem. It is shown that these estimates are unimprovable in order. For the corresponding eigenfunctions, we also obtain unimprovable in order estimates for the rate of convergence. © 2023, Springer Nature Switzerland AG.
Název v anglickém jazyce
Asymptotic Analysis of Boundary-Value Problems for the Laplace Operator with Frequently Alternating Type of Boundary Conditions
Popis výsledku anglicky
This work, which can be considered as a small monograph, is devoted to the study of two-and three-dimensional boundary-value problems for eigenvalues of the Laplace operator with frequently alternating type of boundary conditions. The main goal is to construct asymptotic expansions of the eigenvalues and eigenfunctions of the considered problems. Asymptotic expansions are constructed on the basis of original combinations of asymptotic analysis methods: the method of compatibility of asymptotic expansions, the boundary layer method, and the multiscale method. We perform the analysis of the coefficients of the formally constructed asymptotic series. For strictly periodic and locally periodic alternation of the boundary conditions, the described approach allows one to construct complete asymptotic expansions of the eigenvalues and eigenfunctions. In the case of nonperiodic alternation and the averaged third boundary condition, sufficiently weak conditions on the alternation structure are obtained, under which it is possible to construct the first corrections in the asymptotics for the eigenvalues and eigenfunctions. These conditions include in consideration a wide class of different cases of nonperiodic alternation. With further, very essential weakening of the conditions on the structure of alternation, it is possible to obtain two-sided estimates for the rate of convergence of the eigenvalues of the perturbed problem. It is shown that these estimates are unimprovable in order. For the corresponding eigenfunctions, we also obtain unimprovable in order estimates for the rate of convergence. © 2023, Springer Nature Switzerland AG.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of mathematical sciences
ISSN
1072-3374
e-ISSN
1573-8795
Svazek periodika
277
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
118
Strana od-do
841-958
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85180665503