Operator estimates for non-periodically perforated domains with Dirichlet and nonlinear Robin conditions: Strange term
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F24%3A50021127" target="_blank" >RIV/62690094:18470/24:50021127 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1002/mma.9807" target="_blank" >https://doi.org/10.1002/mma.9807</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mma.9807" target="_blank" >10.1002/mma.9807</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Operator estimates for non-periodically perforated domains with Dirichlet and nonlinear Robin conditions: Strange term
Popis výsledku v původním jazyce
We consider a boundary value problem for a general second-order linear equation in a domain with a fine perforation. The latter is made by small cavities; both the shapes of the cavities and their distribution are arbitrary. The boundaries of the cavities are subject either to a Dirichlet or a nonlinear Robin condition. On the perforation, certain rather weak conditions are imposed to ensure that under the homogenization, we obtain a similar problem in a non-perforated domain with an additional potential in the equation usually called a strange term. Our main results state the convergence of the solution of the perturbed problem to that of the homogenized one in W21$$ {W}_2 circumflex 1 $$- and L2$$ {L}_2 $$-norms uniformly in L2$$ {L}_2 $$-norm of the right hand side in the equation. The estimates for the convergence rates are established, and their order sharpness is discussed.
Název v anglickém jazyce
Operator estimates for non-periodically perforated domains with Dirichlet and nonlinear Robin conditions: Strange term
Popis výsledku anglicky
We consider a boundary value problem for a general second-order linear equation in a domain with a fine perforation. The latter is made by small cavities; both the shapes of the cavities and their distribution are arbitrary. The boundaries of the cavities are subject either to a Dirichlet or a nonlinear Robin condition. On the perforation, certain rather weak conditions are imposed to ensure that under the homogenization, we obtain a similar problem in a non-perforated domain with an additional potential in the equation usually called a strange term. Our main results state the convergence of the solution of the perturbed problem to that of the homogenized one in W21$$ {W}_2 circumflex 1 $$- and L2$$ {L}_2 $$-norms uniformly in L2$$ {L}_2 $$-norm of the right hand side in the equation. The estimates for the convergence rates are established, and their order sharpness is discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-18739S" target="_blank" >GA22-18739S: Asymptotická a spektrální analýza operátorů v matematické fyzice</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Methods in the Applied Sciences
ISSN
0170-4214
e-ISSN
1099-1476
Svazek periodika
47
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
43
Strana od-do
4122-4164
Kód UT WoS článku
001110225500001
EID výsledku v databázi Scopus
2-s2.0-85178171945