On Perturbation of Thresholds in Essential Spectrum under Coexistence of Virtual Level and Spectral Singularity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F24%3A50021853" target="_blank" >RIV/62690094:18470/24:50021853 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1134/S106192084010059" target="_blank" >https://link.springer.com/article/10.1134/S106192084010059</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1134/S106192084010059" target="_blank" >10.1134/S106192084010059</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Perturbation of Thresholds in Essential Spectrum under Coexistence of Virtual Level and Spectral Singularity
Popis výsledku v původním jazyce
We study the perturbation of the Schr & ouml;dinger operator on the plane with a bounded potential of the form V-1(x)+V-2(y), where V-1 is a real function and V-2 is a compactly supported function. It is assumed that the one-dimensional Schr & ouml;dinger operator H-1 with the potential V-1 has two real isolated eigenvalues Lambda(0), Lambda(1) in the lower part of its spectrum, and the one-dimensional Schr & ouml;dinger operator H-2 with the potential V-2 has a virtual level at the boundary of its essential spectrum, i.e., at lambda = 0, and a spectral singularity at the inner point of the essential spectrum lambda = mu > 0. In addition, the eigenvalues and the spectral singularity overlap in the sense of the equality lambda(0 ): = Lambda(0 )+ mu = Lambda(1). We show that a perturbation by an abstract localized operator leads to a bifurcation of the internal threshold lambda(0) into four spectral objects which are resonances and/or eigenvalues. These objects correspond to the poles of the local meromorphic continuations of the resolvent. The spectral singularity of the operator H-2 qualitatively changes the structure of these poles as compared to the previously studied case where no spectral singularity was present. This effect is examined in detail, and the asymptotic behavior of the emerging poles and corresponding spectral objects of the perturbed Schr & ouml;dinger operator is described.
Název v anglickém jazyce
On Perturbation of Thresholds in Essential Spectrum under Coexistence of Virtual Level and Spectral Singularity
Popis výsledku anglicky
We study the perturbation of the Schr & ouml;dinger operator on the plane with a bounded potential of the form V-1(x)+V-2(y), where V-1 is a real function and V-2 is a compactly supported function. It is assumed that the one-dimensional Schr & ouml;dinger operator H-1 with the potential V-1 has two real isolated eigenvalues Lambda(0), Lambda(1) in the lower part of its spectrum, and the one-dimensional Schr & ouml;dinger operator H-2 with the potential V-2 has a virtual level at the boundary of its essential spectrum, i.e., at lambda = 0, and a spectral singularity at the inner point of the essential spectrum lambda = mu > 0. In addition, the eigenvalues and the spectral singularity overlap in the sense of the equality lambda(0 ): = Lambda(0 )+ mu = Lambda(1). We show that a perturbation by an abstract localized operator leads to a bifurcation of the internal threshold lambda(0) into four spectral objects which are resonances and/or eigenvalues. These objects correspond to the poles of the local meromorphic continuations of the resolvent. The spectral singularity of the operator H-2 qualitatively changes the structure of these poles as compared to the previously studied case where no spectral singularity was present. This effect is examined in detail, and the asymptotic behavior of the emerging poles and corresponding spectral objects of the perturbed Schr & ouml;dinger operator is described.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Russian journal of mathematical physics
ISSN
1061-9208
e-ISSN
1555-6638
Svazek periodika
31
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
60-78
Kód UT WoS článku
001186903600002
EID výsledku v databázi Scopus
2-s2.0-85188064518