Video Camera Latency Analysis and Measurement
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F20%3A10133282" target="_blank" >RIV/63839172:_____/20:10133282 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TCSVT.2020.2978057" target="_blank" >https://doi.org/10.1109/TCSVT.2020.2978057</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TCSVT.2020.2978057" target="_blank" >10.1109/TCSVT.2020.2978057</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Video Camera Latency Analysis and Measurement
Popis výsledku v původním jazyce
All modern video cameras exhibit some latency between the scene being captured and the output video signal. This camera latency is significant to the overall latency of a video network transmission chain. Some real-time applications based on video sharing require very low latency and selecting the right camera is then crucial. We observed how video cameras operate regarding their latency. We proposed three methods to measure camera latency: timecode view, waveform shift, and screen photodetector methods. All methods can achieve a subframe resolution and precision of approximately~1~ms although with varying levels of automation, convenience and suitability for particular cameras. We discuss arrangements that affect measurement precision. We applied the proposed methods to a sample camera, and we show measurements results for several other cameras. The measurement results showed that the fastest cameras provide latencies lower than 5~ms, which should be fast enough even for demanding real-time applications. However, most cameras still exhibit latencies at the range of 1---3 video frames.
Název v anglickém jazyce
Video Camera Latency Analysis and Measurement
Popis výsledku anglicky
All modern video cameras exhibit some latency between the scene being captured and the output video signal. This camera latency is significant to the overall latency of a video network transmission chain. Some real-time applications based on video sharing require very low latency and selecting the right camera is then crucial. We observed how video cameras operate regarding their latency. We proposed three methods to measure camera latency: timecode view, waveform shift, and screen photodetector methods. All methods can achieve a subframe resolution and precision of approximately~1~ms although with varying levels of automation, convenience and suitability for particular cameras. We discuss arrangements that affect measurement precision. We applied the proposed methods to a sample camera, and we show measurements results for several other cameras. The measurement results showed that the fastest cameras provide latencies lower than 5~ms, which should be fast enough even for demanding real-time applications. However, most cameras still exhibit latencies at the range of 1---3 video frames.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20206 - Computer hardware and architecture
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_013%2F0001797" target="_blank" >EF16_013/0001797: E-infrastruktura CESNET - modernizace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Circuits and Systems for Video Technology
ISSN
1051-8215
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
140-147
Kód UT WoS článku
000607384300012
EID výsledku v databázi Scopus
2-s2.0-85099375282