Assessment of features for automatic CTG analysis based on expert Annotation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F65269705%3A_____%2F11%3A%230001549" target="_blank" >RIV/65269705:_____/11:#0001549 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/11:00203843 RIV/68407700:21230/11:00310219
Výsledek na webu
<a href="http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6091495" target="_blank" >http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6091495</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IEMBS.2011.6091495" target="_blank" >10.1109/IEMBS.2011.6091495</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Assessment of features for automatic CTG analysis based on expert Annotation
Popis výsledku v původním jazyce
Cardiotocography (CTG) is the monitoring of fetal heart rate (FHR) and uterine contractions (TOCO) since 1960's used routinely by obstetricians to detect fetal hypoxia. The evaluation of the FHR in clinical settings is based on an evaluation of macroscopic morphological features and so far has managed to avoid adopting any achievements from the HRV research field. In this work, most of the ever-used features utilized for FHR characterization, including FIGO, HRV, nonlinear, wavelet, and time and frequency domain features, are investigated and the features are assessed based on their statistical significance in the task of distinguishing the FHR into three FIGO classes. Annotation derived from the panel of experts instead of the commonly utilized pH values was used for evaluation of the features on a large data set (552 records). We conclude the paper by presenting the best uncorrelated features and their individual rank of importance according to the meta-analysis of three different ra
Název v anglickém jazyce
Assessment of features for automatic CTG analysis based on expert Annotation
Popis výsledku anglicky
Cardiotocography (CTG) is the monitoring of fetal heart rate (FHR) and uterine contractions (TOCO) since 1960's used routinely by obstetricians to detect fetal hypoxia. The evaluation of the FHR in clinical settings is based on an evaluation of macroscopic morphological features and so far has managed to avoid adopting any achievements from the HRV research field. In this work, most of the ever-used features utilized for FHR characterization, including FIGO, HRV, nonlinear, wavelet, and time and frequency domain features, are investigated and the features are assessed based on their statistical significance in the task of distinguishing the FHR into three FIGO classes. Annotation derived from the panel of experts instead of the commonly utilized pH values was used for evaluation of the features on a large data set (552 records). We conclude the paper by presenting the best uncorrelated features and their individual rank of importance according to the meta-analysis of three different ra
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
FK - Gynekologie a porodnictví
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/NT11124" target="_blank" >NT11124: Vliv hodnocení kardiotokografie pomocí metod umělé inteligence na kvalitu perinatální péče</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
33rd Annual International Conference of the IEEE EMBS
ISBN
978-1-4244-4122-8
ISSN
1557-170X
e-ISSN
—
Počet stran výsledku
4
Strana od-do
6051-6054
Název nakladatele
IEEE
Místo vydání
Boston
Místo konání akce
Boston
Datum konání akce
1. 1. 2011
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000298810004242